My services

The book you currently see is free and is available in open source form. But sometimes | need to do
something for money, so sorry in advance for placing my advertisement right here.

Reverse engineering
| can’t accept full-time job offers, | mostly work remotely on small tasks, like these:
Decrypting a database, managing unknown type of files

Due to NDA agreement, | can’t reveal many details about the last case, but the case in 8.7 on page 861
section is heavily based on a real case.

Rewriting some kind of old EXE or DLL file back to C/C++
Dongles

Occasionally | do software copy-protection dongle replacements or dongle emulators. In general, it is
somewhat unlawful to break software protection, so | can do this only if these conditions are met:

» software company who developed the software product does not exist anymore to my best knowl-
edge;

* the software product is older than 10 years;

* you have a dongle to read information from it. In other words, | can only help to those who still uses
some very old software, completely satisfied with it, but afraid of dongle electrical breakage and
there are no company who can still sell the dongle replacement.

These includes ancient MS-DOS and UNIX software. Software for exotic computer architectures (like MIPS,
DEC Alpha, PowerPC) accepted as well.

Examples of my work you may find here:
* My book devoted to reverse engineering has a part about copy-protection dongles: 8.5.
* Finding unknown algorithm using only input/output pairs and Z3 SMT solver article
e About MicroPhar (93c46-based dongle) emulation in DosBox.
* Source code of DOS MicroPhar emulator using EMM386 1/0O interception API
Contact me
E-Mail: dennis(a)yurichev.com.

Still want to hire reverse engineer/security researcher on full-time basis?

You may try Reddit RE hiring thread. There is also Russian-speaking forum with a section devoted to RE
jobs.

http://beginners.re/
https://github.com/dennis714/RE-for-beginners/
https://en.wikipedia.org/wiki/Software_protection_dongle
http://yurichev.com/writings/z3_rockey.pdf
http://yurichev.com/blog/56/
http://conus.info/dongle/src/microph.asm
https://www.reddit.com/r/ReverseEngineering/comments/49cza0/rreverseengineerings_2015_triannual_hiring_thread/
https://forum.reverse4you.org/forumdisplay.php?f=252
https://forum.reverse4you.org/forumdisplay.php?f=252

Reverse Engineering for Beginners

Dennis Yurichev

Reverse Engineering for Beginners

Dennis Yurichev
<dennis(a)yurichev.com>

©@®0
©2013-2016, Dennis Yurichev.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
license. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/.

Text version (February 11, 2017).
The latest version (and Russian edition) of this text is accessible at beginners.re.

The cover was made by Andy Nechaevsky: facebook.

https://creativecommons.org/licenses/by-sa/4.0/
http://go.yurichev.com/17009
http://go.yurichev.com/17023

Call for translators!

You may want to help me with translation this work into languages other than English and Russian. Just
send me any piece of translated text (no matter how short) and I'll put it into my LaTeX source code.

Read here.

Speed isn’'t important, because this is open-source project, after all. Your name will be mentioned as
project contributor. Korean, Chinese and Persian languages are reserved by publishers. English and
Russian versions | do by myself, but my English is still that horrible, so I'm very grateful for any notes
about grammar, etc. Even my Russian is also flawed, so I’'m grateful for notes about Russian text as well!

So do not hesitate to contact me: dennis(a)yurichev.com.

https://github.com/dennis714/RE-for-beginners/blob/master/Translation.md

Abridged contents

8

9

Code patterns

Important fundamentals

Slightly more advanced examples

Java

Finding important/interesting stuff in the code
0S-specific

Tools

Case studies

Examples of reversing proprietary file formats

100ther things

11Books/blogs worth reading

12 Communities

Afterword

Appendix

Acronyms used

Glossary

Index

448

467

665

704

732

787

791

925

985

993

996

998

1000

1029

1034

1036

Contents

1 Code patterns 1
1.1 Themethod e e 1
1.2 SomMe basiCs . . . o o e e e e e e 2

1.2.1 Ashortintroductiontothe CPU 2
1.2.2 Numeral systems e e e 3
1.3 Empty function. e e e e 5
13,0 X80 . . . e e 5
1.3.2 ARM . e 6
1.3.3 MIPS . . e 6
1.3.4 Empty functionsin practice e 6
1.4 Returning value e e e 7
141 X80 . . o e e 7
1.4.2 ARM . . e 7
L1.4.3 MIPS . . e e 8
1.4.4 Inpractice e 8
1.5 Hello, world!l . . o e 8
1.5.1 X80 . . o e 9
1.5.2 X86-64 e e e e 14
1.5.3 GCC—onemore thing e e e 18
L1.5.4 ARM . . e 19
1.5, 5 MIPS . e 25
1.5.6 ConcCluSION o e e 30
L1.5.7 EXEIrCiSeS . . i i i i e e e e e e e 30
1.6 Function prologue and epilogue 30
1.6.1 RECUISION e e e e e e 30
1.7 StacK . . o e e 30
1.7.1 Why does the stack grow backwards? e 31
1.7.2 Whatis the stack used for? e 31
1.7.3 Atypical stack layout e 38
1.7.4 Noiseinstack e e e 38
L1.7.5 EXEIrCiSeS . . o i e e 42
1.8 printf() with several arguments e e e 42
1.8.1 X80 . . o e 42
1.8.2 ARM . e 53
1.8.3 MIPS . .. e 59
1.8.4 Conclusion e e 65
1.8.5 Bytheway e 66
1.9 scanf() o o e 66
1.9.1 Simple example e 66
1.9.2 Popularmistake 75
1.9.3 Global variables e 76
1.9.4 scanf()o i e 85
1.9.5 EXEIrCiSe . o o it e 97
1.10Accessing passed arguments e e e e e 98
L.10.1X86 . . . e e e 98
L.10.2X04 . . o e e 100
L.10.3ARM . . e 103
L. 10 AMIPS . e e 106
1.11More about results returning e e e 107
1.11.1Attempt to use the result of a function returning void 107
1.11.2What if we do not use the functionresult? 109
1.11.3Returning a structure L 109

CONTENTS

L. L2 P0INtarS . . . e e e e 110
1.12.1Swap input values e 110
1.12.2Returning values e e 111

L.13GOTO Operator. . . v v v i s s e e e e e e 121
1.13.1Dead code e e 124
N 0 B0 = of 1= 125

1.14Conditional jJumps e 125
1.14.1Simple example e 125
1.14.2Calculating absolute value e 142
1.14.3Ternary conditional operator e e 144
1.14.4Getting minimal and maximal values 147
1.14.5C0NClUSION e e 152
L. 14, BEXEICISE . v v i i e e e 153

1.15switch()/case/default 154
1.15.1Small number of cases 154
L1.15.2A 10t Oof Cases v o i e 167
1.15.3When there are several case statementsinoneblock 179
1.15.4Fall-through o 183
1. 15.5EXEICISES . . o i i e e e 184

L LB L00PS . o v e e e e e 185
1.16.1Simple example e 185
1.16.2Memory blocks copying routine L 196
1.16.3C0oNClUSION e 199
L. 16, 4AEXEICISES o v v v e e 200

1.17More about strings e e 201
L1.17.3strien() . . . o o e 201
1.17.2Boundaries of strings L e 212

1.18Replacing arithmetic instructions to otherones 212
1.18.1Multiplication. 212
L1.18.2DIVISION . v i e 217
L1.18.3EXEICISE . . . o o e e 218

1.19Floating-point unit e 218
1.19.1IEEE 754 e e 218
1.19.2X86 . . . e e 218
1.19.3ARM, MIPS, x86/x64 SIMD e 219
L1.19.4C/CH+ o o o e 219
1.19.5Simple example e 219
1.19.6Passing floating point numbers via arguments, 230
1.19.7Comparison example 233
1.19.8Some constants e 267
1.19.9C0PYING . . . e e e e 267
1.19.18tack, calculators and reverse Polish notation 267
1.10.1X64 . . . e 267
L.19.1BXEICISES .« o v v i i e e e e e 267

L. 20 AImaYS . o e 268
1.20.1Simple example o e e 268
1.20.2Bufferoverflow 275
1.20.3Buffer overflow protection methods 283
1.20.40ne more word about arrays e e e 286
1.20.5Array of pointers to strings 287
1.20.6Multidimensional arrays e e e e 293
1.20.7Pack of strings as a two-dimensionalarray, 300
1.20.8C0NCIUSION . . . L o e e e e 304

1.21By the Way 304
121 1EXEICISES o o v it i e e e e e 304

1.22Manipulating specific bit(s) 304
1.22.1Specific bitchecking e 304
1.22.2Setting and clearing specificbits 308
1.22.3Shifts e 317
1.22.4Setting and clearing specific bits: FPUY example 317
1.22.5Counting bits setto 1 322
1.22.6C0oNCIUSION . . . L e e 337
1.22.7EXEICISES . . o i i ot e e 339

IFloating-point unit

CONTENTS

1.23Linear congruential generator 339
L1.23.IX806 . . o o e 340
1.23.2X04 . . . 341
1.23.332-bit ARM . . . o 341
L. 23 AMIPS . L e 342
1.23.5Thread-safe version of the example 344

L 24 S rUCtUreS e e e e e e 345
1.24.1MSVC: SYSTEMTIME example e e e e e e 345
1.24.2Let’s allocate space for a structure using malloc() 349
1.24 3UNIX: struct tm . . . o 351
1.24 4Fields packing in structure e e 360
1.24.5Nested structures e 367
1.24.6Bit fields in a structure e 370
1.24.7EXEICISES . o o v i o e e e e e 377

L1.25UNIONS . . o o 377
1.25.1Pseudo-random number generatorexample. o e 377
1.25.2Calculating machine epsilon e 381

1.26FSCALE replacement e e 383
1.26.1Fast square root calculation e 385

1.27Pointers to functions L 385
L. 27 . AMSVC . . o 386
1.27.2GCC . o 393
1.27.3Danger of pointers to functions 397

1.2864-bit values in 32-bit environment L e 397
1.28.1Returning of 64-bitvalue e 397
1.28.2Arguments passing, addition, subtraction 398
1.28.3Multiplication, division e e 401
1.28.4Shifting right e 405
1.28.5Converting 32-bit value into 64-bitone L o 406

1.29SIMD . . . 407
1.29.1Vectorization 408
1.29.2SIMD strlen() implementation. e 417

1.3064 bits . . . o e 421
1.30.1X86-64 o e 421
1.30.2ARM . L 427
1.30.3Float point numbers e e e 428
1.30.464-bit architecture criticism e 428

1.31Working with floating point numbers using SIMD 428
1.31.1Simple example e 428
1.31.2Passing floating point number viaargumentso .. 436
1.31.3Comparison example e 437
1.31.4Calculating machine epsilon: x64 andSIMD 439
1.31.5Pseudo-random number generator example revisited, 440
L3L.0SUMMAIY . . o ot i e e e e e e e e e e e e e e 440

1.32ARM-specific details 441
1.32.1Number sign (#) before number 441
1.32.2Addressing modes e e e e e 441
1.32.3Loading a constantintoaregister 442
1.32.4Relocs in ARMGBA e e 444

1.33MIPS-specificdetails e 445
1.33.1Loading a 32-bit constantintoregister o 445
1.33.2Further reading about MIPS e 447

2 Important fundamentals 448

2.1 Integral datatypes e 449
2.1.1 Bit. . . 449
2.1.2 Nibble AKA nybble 449
2.1.3 Byte . . 450
2.1.4 Wide char e e 450
2.1.5 Signed integer vsunsigned e e 451
2.1.6 WOrd . . . o 451
2.1.7 Address register 452
2.1.8 NUMDbEIS . . e e e 452

2.2 Signed number representations 454

Vi

CONTENTS

2.2.1 Using IMUL over MUL 456
2.2.2 Couple of additions about two’s complement form 456

2.3 AND . . e e 457
2.3.1 Checkingifavalueison2™boundary 457
2.3.2 KOI-8R Cyrillic encoding o i 458

2.4 AND and OR as subtraction and addition e 459
2.4.1 ZX Spectrum ROM text strings e 459

2.5 XOR (exclusive OR) . . . o v i e e e e e 461
2.5.1 Everyday speech e e 461
2.5.2 ENncCryplion e 461
2.5.3 RAIDZ4 . . . 461
2.5.4 XOR swap algorithm e 461
2.5.5 XOR linked list e e 462
2.5.6 AND/OR/XOR as MOV o s e e e e e e e 462

2.6 Population count. e e 463
2.7 ENdianness o e e e e e 463
2.7.1 Big-endian 463
2.7.2 Little-endian e e 463
2.7.3 EXample . . . e e e 464
2.7.4 Bi-endian e e e 464
2.7.5 Converting data 464

2.8 MEMOIY . . o e e e e e e 464
2.9 CPU . . e e 465
2.9.1 Branch predictors e e 465
2.9.2 Datadependencies e 465

2. 10Hash functions e e e e e e 465
2.10.1How do one-way functions work? 466

3 Slightly more advanced examples 467
3.1 Double negation e e e 467
3.2 strstr() example . . . e e e 468
3.3 Temperature CONVerting o o e e 468
3.3.1 Integervalues e e 468
3.3.2 Floating-pointvalues. e e 470

3.4 FibonaccCi nuUmMbers e e e e 472
3.4.1 Example #1 . . . e 473
3.4.2 Example #2 . . . 476
3.4.3 SUMMAIY . . o o e e e 480

3.5 CRC32 calculation example e e 481
3.6 Network address calculation example e 484
3.6.1 calc_network address() e 485
3.6.2 form IP() 485
3.6.3 print_as IP() e 487
3.6.4 form_netmask() and set bit() 488
3.6.5 SUMMaAIY . . o o e e e 489

3.7 Loops: severaliterators e e e 489
3.7.1 Three iterators e e e 489
3.7.2 Twoiterators e e 490
3.7.3 Intel C4H+ 2011 CaSe . . v v v i e e 492

3.8 DUff'sdevice e e e e 493
3.8.1 Should one use unrolled 100pPS? e 496

3.9 Division using multiplication e 496
3.9.1 X86 . . . e 496
3.9.2 How it works o e e 497
3.9.3 ARM L L e 498
3.9.4 MIPS . . L e 499
3.9.5 EXErCiSe . . . e e e 499
3.10String to number conversion (atoi()) e 499
3.10.1Simple example e 500
3.10.2A slightly advanced example e e 503

3. 10.3EXErCiSe & . vt i e 506
3.11Inline fuNCLiONS e e e 506
3.11.1Strings and memory functions 507

2Redundant Array of Independent Disks

vii

CONTENTS

3.12C00 restrict e e e 515
3.13Branchless abs() function e e e e 517
3.13.10ptimizing GCC 4.9.1 X604 o 517
3.13.20ptimizing GCC 4.9 ARMGB4 e 518
3.14Variadic funNCtions L e e e e e e 518
3.14.1Computing arithmetic mean 518
3.14.2vprintf() function case e e 522
3.4, 3PN CaS . v i e 523
3.14.4Format string exploit e e e 524
3.15Strings trimming e e e e 525
3.15.1x64: Optimizing MSVC 2013 526
3.15.2x64: Non-optimizing GCC 4.9.1 527
3.15.3x64: Optimizing GCC 4.9.1 528
3.15.4ARM64: Non-optimizing GCC (Linaro) 4.9 it 529
3.15.5ARM64: Optimizing GCC (Linaro) 4.9 e e e e e 530
3.15.6ARM: Optimizing Keil 6/2013 (ARM mode) e 531
3.15.7ARM: Optimizing Keil 6/2013 (Thumb mode) 531
3.5, 8MIPS . e e e 532
3.16toupper() function L e e 533
316 X0 . . e 534
3.16.2ARM L e 535
3.16.3SUMMANY . o o o e e e e e e e 537
3.17Incorrectly disassembled code e 537
3.17.1Disassembling from an incorrectstart (x86) e 537
3.17.2How does random noise looks disassembled? o 538
3.180bfuscation e e e e 541
3.18. 1Text Strings o e 542
3.18.2Executable code e 542
3.18.3Virtual machine / pseudo-code 544
3.18.40ther thingsto mention. e e e 544
3. 18 5 EXErCiSe . . v e e 544
3. L0 CHH e e e 544
3.10.1C1aSSES . . e e 544
3.10.208tream . . . e e e 561
3.19.3REfErENCES . . . o e 562
3. 100 ASTL .t e e 563
3.10.5MEMOTY . . o e e e e e e 596
3.20Negative array indices e e e e e 596
3.20.1Addressing string fromtheend 597
3.20.2Addressing some kind of block fromtheend 597
3.20.3Arraysstarted at 1 597
3.21Packing 12-bit values into array e 599
3.21.1Introduction e e e e e 600
3.21.2Data structure e 600
3.21.3The algorithm e 600
3.21.4The C/CH+ COAe . . . o e s e e 600
3.21.5HOW it WOrks e 603
3.21.60ptimizing GCC 4.8.2 for x86-64 i i e e e 604
3.21.70ptimizing Keil 5.05 (Thumb mode) e 606
3.21.80ptimizing Keil 5.05 (ARM mode) e 608
3.21.9(32-bit ARM) Comparison of code density in Thumb and ARM modes 610
3.21.10ptimizing GCC 4.9.3 for ARMGB4 610
3.21.1D0ptimizing GCC 4.4.5 for MIPS e 612
3.21.1Difference from the real FAT12 e 614
3,21 1BXerCiSe . . .t e e e 614
321 18UMMANY . . o o e e e e 615
3.21.180NCIUSION . . . e 615
3.22Windows 16-bit e e e 615
322 1Example# 1 615
3.22.2Example #2 . . . 616
3.22.3Example #3 . . 616
3.22.4Example #4 . . e e e 617
3.22. 5EXample #5 . . . e e e 620
3.22.6Example #6 623

CONTENTS

3.23More about pointers e e e e e 626
3.23.1Working with addresses instead of pointers oo L. 626
3.23.2Passing values as pointers; tagged unionso e e 629
3.23.3Pointers abuse in Windows kernel e 629
3.23.4ANUll pointers 634
3.23.5Array as function argument 637
3.23.6Pointer to function L e 638
3.23.7Pointer as object identificator L 639

3.24Loop optimizations e e e 640
3.24.1Weird loop optimization e e 640
3.24.2Another loop optimization 641

3.25More about structures e e e e 643
3.25.1Sometimes a C structure can be used instead ofarray 643
3.25.2Unsized array in Cstructure e e e 644
3.25.3Version of C structure 645
3.25.4High-score file in “Block out” game and primitive serialization 647

3.26memmove() and MEmMCPY() .« v v v v ot e 652
3.26.1Anti-debugging trick 652

3.27seimp/longimp . . . e e e e 653

3.280ther weird stack hacks e e 655
3.28.1Accessing arguments/local variables of caller L. 655
3.28.2Returning string 657

3.290PenNMP . . L e e e 658
3.29. IMSVC . . e e 660
3.29.2GCC . L e 662

3.30Another heisenbug e e e 663

4 Java 665

I - 1 - T 665
4.1.1 Introduction e e e e 665
4.1.2 Returning avalue e e e 665
4.1.3 Simple calculating functions 670
4.1.4 VM3 memory model o i i 672
4.1.5 Simple function calling e 673
4.1.6 Calling beep() i 674
4.1.7 Linear congruential PRNG* e 675
4.1.8 Conditional Jumps e e e 676
4.1.9 Passing arguments 678
4.1.10Bitfields e e e e 679
4. . L1L00PS . i e e e e 680
4.1.12swWitch() o e e e 682
A L. 13AITAYS o o o o e e e e e 683
4.1 1ASENINGS . o o e e 691
4.1.15EXCeplions e 693
4. 1. 16CIaSSES . . i e e e e 696
4.1.17Simple patching e 698
4. 0. 8SUMMAIY . . e e e e e e e 703

5 Finding important/interesting stuff in the code 704

5.1 Identification of executable files. e 704
5.1.1 Microsoft Visual CH4 o e e e 704
5.1.2 GCC . . e 705
5.1.3 Intel Fortran e e 705
5.1.4 Watcom, OpenWatcom e e 705
5.1.5 Borland e 706
5.1.6 Other known DLLS e e e e e e 707

5.2 Communication with outer world (functionlevel) 707

5.3 Communication with the outer world (win32) 707
5.3.1 Often used functions in the Windows APl i 708
5.3.2 Extending trial period e e e 708
5.3.3 Removing nag dialog box 708
5.3.4 tracer: Intercepting all functions in specific module 708

3Java virtual machine
4pseudorandom number generator

CONTENTS

7

5.4 SHriNGS . . . o o e e e
5.4.1 Text strings o e
5.4.2 Finding stringsin binary e e
5.4.3 Error/debug messages v v i i
5.4.4 Suspicious magic strings
Callsto assert() o i e e e
Constants e
5.6.1 Magic NUMbEIS e e
5.6.2 Specific constants e e
5.6.3 Searching forconstants e e
Finding the right instructions e
Suspicious code patterns
5.8.1 XOR instructions e
5.8.2 Hand-written assembly code. e e
5.9 Using magic numbers while tracing e e e
5.100ther things e e e e e e e

5.10.1General ideao e

5.10.20rder of functions in binary code

5.10.3Tiny functions e e

5. 104 CH 4 e e

5.10.5Some binary file patterns

5.10.6Memory “snapshots” comparing e

i
o u

uu
e N

1 ocdecl . .. e e
2 stdcall e
3 fastcallo e e
A thiscall .o o e e
5 XB6-64 e
6 Return values of float and double type
7 Modifying arguments e e
6.1.8 Taking a pointer to function argument
6.2 Thread Local Storage e
6.2.1 Linear congruential generatorrevisited L
6.3 System calls (syscall-S) e e e
B.3.1 LiNUX . . . e e e e e
6.3.2 WindoWSs e e e
B.4 LiNUX . .t e e e e e e
6.4.1 Position-independentcode e
6.4.2 LD PRELOAD hack in LinUX o o i e s e e e e e e e e e e
6.5 WINdows NT . . . e e e
6.5.1 CRT (WIiN32) . . o o it e e e e e e e e e
6.5.2 WIiN32 PE e
6.5.3 Windows SEH e
6.5.4 Windows NT: Critical section e

Tools

7.1 Binary analysis. e
7.1.1 Disassemblers e e e
7.1.2 Decompilers
7.1.3 Patch comparison/diffing e

7.2 Live analysis . . . o e e e e e e
7.2.1 Debuggers e e e
7.2.2 Library callstracing e e e e
7.2.3 System callstracing
7.2.4 Network sniffing e
7.2.5 Sysinternals
7.2.6 Valgrind e e e e
7.2.7 EmMuUlators e

7.3 Othertools e e e

7.4 Something missing here? e e

Case studies
8.1 Task manager practical joke (Windows Vista) i

X

CONTENTS

8.1.1 Using LEAtoload values 795

8.2 Color Lines game practical joke L 797
8.3 Minesweeper (Windows XP) e e e 800
8.3.1 EXErCiSeS . . i i i e 805

8.4 Hacking Windows CloCK e e e 806
8.5 DONgles e e 812
8.5.1 Example #1: MacOS Classic and PowerPC 812
8.5.2 Example #2: SCO OpenServer i e e e 820
8.5.3 Example #3: MS-DOS e 829

8.6 “QR9”: Rubik’s cube inspired amateur crypto-algorithm 834
8.7 Encrypted database case #1 e e 861
8.7.1 Baseb4 and entropy o e e 862
8.7.2 Isitcompressed? e e 864
8.7.3 Isitencrypted? e e 865
8.7.4 CryptoPP . . . 865
8.7.5 Cipher Feedback mode 867
8.7.6 Initializing Vector 869
8.7.7 Structureofthe buffer. e 870
8.7.8 Noise atthe end e 872
8.7.9 CoNnClUSION . . . e e e 872
8.7.10Post Scriptum: brute-forcing IV L 873

8.8 Overclocking Cointerra Bitcoin miner e 873
8.9 Breaking simple executable cryptor L 877
8.9.1 Otherideasto consider i e 882

B L0S AP L e e e 882
8.10.1About SAP client network traffic compression o oo 882
8.10.2SAP 6.0 password checking functions 893
8.110racle RDBMS e e e 897
8.11.1 V$VERSION tableinthe Oracle RDBMS i i e e 897
8.11.2 X$KSMLRU table in Oracle RDBMS e e e 905
8.11.3 V$TIMER table in Oracle RDBMS i e e e e e e e 906
8.12Handwritten assembly code e e e 910
8.12.1 EICAR testfile e e 910

8. 13 DEMOS . . i e e e e 911
8.13.110 PRINT CHR$(205.5+RND(1)); : GOTO 10 o i e e e e e 911
8.13.2Mandelbrot set e 914
8.140ther examples e e e 924
9 Examples of reversing proprietary file formats 925
9.1 Primitive XOR-encryption i e e e e e 925
9.1.1 Norton Guide: simplest possible 1-byte XOR encryption 926
9.1.2 Simplest possible 4-byte XOR encryption. e 929
9.1.3 Simple encryption using XOR mask e 933
9.1.4 Simple encryption using XOR mask, casell 939

9.2 Analyzing using information entropy e 945
9.2.1 Analyzing entropy in Mathematica e 945
9.2.2 CoNnClUSION . . . e e e e 952
9.2.3 TO0IS . . . e e 952
9.2.4 A word about primitive encryption like XORing 952
9.2.5 More about entropy of executablecode 952
9.2.6 Random number generators e e 953
9.2.7 Entropy of various files e 953
9.2.8 Making lower level of entropy e e 954

9.3 Millenium game save file e e 955
9.4 fortune program indexing file 962
9.4.1 Hacking e e 966
9.4.2 The files o e e e 967

9.5 Oracle RDBMS: .SYM-files e e e e e 967
9.6 Oracle RDBMS: .MSB-files e e e 977
9.6.1 SUMMAIY . . . o i o e e e e e e e e e e e 984

0.7 EXErCiSe . . i i i e e e e e e e 984
100ther things 985
10.1Executable files patching e 985

CONTENTS

10.1.1Text Strings o o o e e e e e 985
10.1.2X86 COE . . . ottt e e e 985
10.2Function arguments statistics e 986
10.3Compiler intrinsic e e e e e 986
10.4Compiler's anomalies 987
10.4.10racle RDBMS 11.2 and Intel C++ 10.1 e e 987
10.4.2MSVC 6.0 e e 987
10.4.3SUMMANY . o o o o e e e e e e e e e e 988
10, 5 aniUM . e e e 988
10.68086 memory model e e e e e e 990
10.7Basic blocks reordering 991
10.7.1Profile-guided optimization 991
11Books/blogs worth reading 993
11.1Books and other materials e e 993
11.1.1Reverse Engineering o o e 993
11 L. 2WiNdOWS . . o ot e 993
L1 L. 3G 4 e e 993
11.1.4X86 / X86-64 o e e 994
L1 L. 5ARM . e e 994
11.0.BJaVva . . e e e 994
L1 L 7UNIX o e e 994
11.1.8Programming in general e 994
11.1.9Cryptography e e 995
12 Communities 996
Afterword 998
12, 1QUESTIONS? . . o e e 998
Appendix 1000

L X8O L e e e 1000

A1 Terminology .o e e e 1000

1.2 General purpose registers e e e 1000

1.3 FPU rregisters . .. o o o e e 1004

1.4 SIMD registers . . . o e e e 1006

1.5 Debugging registers e 1006

1.6 INStruCtions . . . L L L e e 1007

L7 npad L e e e 1019

2 ARM L e 1020

2.1 Terminology . . . o o e 1020

2.2 VEISIONS . o o o e e 1021

2.3 32-bit ARM (AAIrch32) e 1021

2.4 64-bit ARM (AAIChBA) . . . e e 1022

2.5 InStructions L L e 1022

B MIPS e e e 1023

3.1 Registers ... e 1023

3.2 INStructions L L e e 1024

4 Some GCC library functions e 1024

.5 Some MSVC library functions. e 1024

.6 Cheatsheets e e 1025

6.1 IDA L e 1025

6.2 OllyDbg . . . o 1025

6.3 MSVC . . e 1025

6.4 GCC . e 1026

6.5 GDB .. e 1026
Acronyms used 1029
Glossary 1034
Index 1036

Xii

CONTENTS
Preface

There are several popular meanings of the term “reverse engineering”: 1) The reverse engineering of
software: researching compiled programs; 2) The scanning of 3D structures and the subsequent digital
manipulation required in order to duplicate them; 3) Recreating DBMS?® structure. This book is about the
first meaning.

Topics discussed in-depth

x86/x64, ARM/ARM64, MIPS, Java/JVM.

Topics touched upon

Oracle RDBMS (8.11 on page 897), Itanium (10.5 on page 988), copy-protection dongles (8.5 on
page 812), LD PRELOAD (6.4.2 on page 749), stack overflow, ELF®, win32 PE file format (6.5.2 on
page 755), x86-64 (1.30.1 on page 421), critical sections (6.5.4 on page 785), syscalls (6.3 on page 745),
TLS’, position-independent code (PIC®) (6.4.1 on page 746), profile-guided optimization (10.7.1 on
page 991), C++ STL (3.19.4 on page 563), OpenMP (3.29 on page 658), SEH (6.5.3 on page 762).

Prerequisites

Basic C PL° knowledge. Recommended reading: 11.1.3 on page 993.

Exercises and tasks

...are all moved to the separate website: http://challenges.re.

About the author

Dennis Yurichev is an experienced reverse engineer and programmer.
He can be contacted by email: dennis(a)yurichev.com.

= =¥y

Praise for Reverse Engineering for Beginners

e “Now that Dennis Yurichev has made this book free (libre), it is a contribution to the world of free
knowledge and free education.” Richard M. Stallman, GNU founder, software freedom activist.

« “It's very well done .. and for free .. amazing.”!° Daniel Bilar, Siege Technologies, LLC.

>Database management systems

6 Executable file format widely used in *NIX systems including Linux
"Thread Local Storage

8position Independent Code: 6.4.1 on page 746

9Programming language
10twitter.com/daniel_bilar/status/436578617221742593

Xiii

http://challenges.re
http://go.yurichev.com/17095

CONTENTS

u

« “... excellent and free”!! Pete Finnigan, Oracle RDBMS security guru.

“

* “... book is interesting, great job!” Michael Sikorski, author of Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software.

u

* “... my compliments for the very nice tutorial!” Herbert Bos, full professor at the Vrije Universiteit
Amsterdam, co-author of Modern Operating Systems (4th Edition).

» “... Iltis amazing and unbelievable.” Luis Rocha, CISSP / ISSAP, Technical Manager, Network & Infor-
mation Security at Verizon Business.

* “Thanks for the great work and your book.” Joris van de Vis, SAP Netweaver & Security specialist.

u

 “... reasonable intro to some of the techniques.”!? Mike Stay, teacher at the Federal Law Enforce-
ment Training Center, Georgia, US.

* “l love this book! | have several students reading it at the moment, plan to use it in graduate
course.”'3 Sergey Bratus , Research Assistant Professor at the Computer Science Department at
Dartmouth College

« “Dennis @Yurichev has published an impressive (and free!) book on reverse engineering”'* Tanel
Poder, Oracle RDBMS performance tuning expert .

”

* “This book is some kind of Wikipedia to beginners...
searcher.

Archer, Chinese Translator, IT Security Re-

» “First class reference for people wanting to learn reverse engineering. And it’s free for all.” Mikko
Hyppo6nen, F-Secure.

Thanks

For patiently answering all my questions: Andrey “herml1t” Baranovich, Slava “Avid” Kazakov.

For sending me notes about mistakes and inaccuracies: Stanislav “Beaver” Bobrytskyy, Alexander Ly-
senko, Alexander “Solar Designer” Peslyak, Federico Ramondino, Mark Wilson, Shell Rocket, Zhu Ruijin,
Changmin Heo, Vitor Vidal, Stijn Crevits, Jean-Gregoire Foulon'®, Ben L., Etienne Khan, Norbert Szetei'®,
Marc Remy..

For helping me in other ways: Andrew Zubinski, Arnaud Patard (rtp on #debian-arm IRC), noshadow on
#gcc IRC, Aliaksandr Autayeu, Mohsen Mostafa Jokar.

For translating the book into Simplified Chinese: Antiy Labs (antiy.cn), Archer.

For translating the book into Korean: Byungho Min.

For translating the book into Dutch: Cedric Sambre (AKA Midas).

For translating the book into Spanish: Diego Boy, Luis Alberto Espinosa Calvo, Fernando Guida.

For translating the book into Portuguese: Thales Stevan de A. Gois.

For translating the book into Italian: Federico Ramondino®’, Paolo Stivanin'®, twyK.

For translating the book into French: Florent Besnard!?, Marc Remy?°, Baudouin Landais, Téo Dacquet?!.
For translating the book into German: Dennis Siekmeier??, Julius Angres?3, Dirk Loser.

For proofreading: Alexander “Lstar” Chernenkiy, Vladimir Botov, Andrei Brazhuk, Mark “Logxen” Cooper,
Yuan Jochen Kang, Mal Malakov, Lewis Porter, Jarle Thorsen, Hong Xie.

Vasil Kolev?* did a great amount of work in proofreading and correcting many mistakes.

twitter.com/petefinnigan/status/400551705797869568
L2reddit
L3twitter.com/sergeybratus/status/505590326560833536
L4twitter.com/TanelPoder/status/524668104065159169
Lhttps://github.com/pixjuan
6https://github.com/73696e65
Thttps://github.com/pinkrab
18https://github.com/paolostivanin
https://github.com/besnardf
2https://github.com/mremy
2lhttps://github.com/T30rix
22https://github.com/DSiekmeier
23https://github.com/JAngres
24https://vasil.ludost.net/

Xiv

http://antiy.cn
http://go.yurichev.com/17096
http://go.yurichev.com/17099
http://go.yurichev.com/17097
http://go.yurichev.com/17098
https://github.com/pixjuan
https://github.com/73696e65
https://github.com/pinkrab
https://github.com/paolostivanin
https://github.com/besnardf
https://github.com/mremy
https://github.com/T30rix
https://github.com/DSiekmeier
https://github.com/JAngres
https://vasil.ludost.net/

CONTENTS
For illustrations and cover art: Andy Nechaevsky.

Thanks also to all the folks on github.com who have contributed notes and corrections®>.

Many KTEX packages were used: | would like to thank the authors as well.

Donors

Those who supported me during the time when | wrote significant part of the book:

2 * Oleg Vygovsky (50+100 UAH), Daniel Bilar ($50), James Truscott ($4.5), Luis Rocha ($63), Joris van
de Vis ($127), Richard S Shultz ($20), Jang Minchang ($20), Shade Atlas (5 AUD), Yao Xiao ($10), Pawel
Szczur (40 CHF), Justin Simms ($20), Shawn the ROck ($27), Ki Chan Ahn ($50), Triop AB (100 SEK), Ange
Albertini (€10+50), Sergey Lukianov (300 RUR), Ludvig Gislason (200 SEK), Gérard Labadie (€40), Sergey
Volchkov (10 AUD), Vankayala Vigneswararao ($50), Philippe Teuwen ($4), Martin Haeberli ($10), Victor
Cazacov (€5), Tobias Sturzenegger (10 CHF), Sonny Thai ($15), Bayna AlZaabi ($75), Redfive B.V. (€25),
Joona Oskari Heikkila (€5), Marshall Bishop ($50), Nicolas Werner (€12), Jeremy Brown ($100), Alexandre
Borges ($25), Vladimir Dikovski (€50), Jiarui Hong (100.00 SEK), Jim Di (500 RUR), Tan Vincent ($30),
Sri Harsha Kandrakota (10 AUD), Pillay Harish (10 SGD), Timur Valiev (230 RUR), Carlos Garcia Prado
(€10), Salikov Alexander (500 RUR), Oliver Whitehouse (30 GBP), Katy Moe ($14), Maxim Dyakonov ($3),
Sebastian Aguilera (€20), Hans-Martin MUnch (€15), Jarle Thorsen (100 NOK), Vitaly Osipov ($100), Yuri
Romanov (1000 RUR), Aliaksandr Autayeu (€10), Tudor Azoitei ($40), ZOvsky (€10), Yu Dai ($10).

Thanks a lot to every donor!

mini-FAQ

Q: What are prerequisites for reading this book?
A: Basic understanding of C/C++ is desirable.
Q: Can | buy Russian/English hardcopy/paper book?

A: Unfortunately no, no publisher got interested in publishing Russian or English version so far. Meanwhile,
you can ask your favorite copy shop to print/bind it.

Q: Is there epub/mobi version?

A: The book is highly dependent on TeX/LaTeX-specific hacks, so converting to HTML (epub/mobi is a set
of HTMLs) will not be easy.

Q: Why should one learn assembly language these days?

A: Unless you are an 0S?® developer, you probably don’'t need to code in assembly—latest compilers
(2010s) are much better at performing optimizations than humans 27

Also, latest CPU%8s are very complex devices and assembly knowledge doesn’t really help one to under-
stand their internals.

That being said, there are at least two areas where a good understanding of assembly can be helpful:
First and foremost, security/malware research. It is also a good way to gain a better understanding of
your compiled code whilst debugging. This book is therefore intended for those who want to understand
assembly language rather than to code in it, which is why there are many examples of compiler output
contained within.

Q: I clicked on a hyperlink inside a PDF-document, how do | go back?

A: In Adobe Acrobat Reader click Alt+LeftArrow. In Evince click “<” button.

Q: May | print this book / use it for teaching?

A: Of course! That’s why the book is licensed under the Creative Commons license (CC BY-SA 4.0).
Q: Why is this book free? You’'ve done great job. This is suspicious, as many other free things.

A: In my own experience, authors of technical literature do this mostly for self-advertisement purposes.
It's not possible to get any decent money from such work.

25https://github.com/dennis714/RE- for-beginners/graphs/contributors

26Qperating System

27 very good text about this topic: [Agner Fog, The microarchitecture of Intel, AMD and VIA CPUs, (2016)]
28Central processing unit

XV

https://github.com/dennis714/RE-for-beginners/graphs/contributors

CONTENTS
Q: How does one get a job in reverse engineering?

A: There are hiring threads that appear from time to time on reddit, devoted to RE?? (2016). Try looking
there.

A somewhat related hiring thread can be found in the “netsec” subreddit: 2016.
Q: I have a question...

A: Send it to me by email (dennis(a)yurichev.com).

About the Korean translation

In January 2015, the Acorn publishing company (www.acornpub.co.kr) in South Korea did a huge amount
of work in translating and publishing my book (as it was in August 2014) into Korean.

It’'s now available at their website.

The translatoris Byungho Min (twitter/tais9). The cover art was done by my artistic friend, Andy Nechaevsky:
facebook/andydinka. They also hold the copyright to the Korean translation.

So, if you want to have a real book on your shelf in Korean and want to support my work, it is now available
for purchase.

29reddit.com/r/ReverseEngineering/

XVi

https://www.reddit.com/r/ReverseEngineering/comments/4sbd11/rreverseengineerings_2016_triannual_hiring_thread/
https://www.reddit.com/r/netsec/comments/552rz1/rnetsecs_q4_2016_information_security_hiring/
http://www.acornpub.co.kr
http://go.yurichev.com/17343
http://go.yurichev.com/17344
http://go.yurichev.com/17023
http://go.yurichev.com/17027

Chapter 1

Code patterns

Everything is comprehended through
comparison

Author unknown

1.1 The method

When the author of this book first started learning C and, later, C++, he used to write small pieces of
code, compile them, and then look at the assembly language output. This made it very easy for him
to understand what was going on in the code that he had written. . He did it so many times that the
relationship between the C/C++ code and what the compiler produced was imprinted deeply in his mind.
It's easy to imagine instantly a rough outline of C code’s appearance and function. Perhaps this technique
could be helpful for others.

Sometimes ancient compilers are used here, in order to get the shortest (or simplest) possible code snip-
pet.

Exercises

When the author of this book studied assembly language, he also often compiled small C-functions and
then rewrote them gradually to assembly, trying to make their code as short as possible. This probably
is not worth doing in real-world scenarios today, because it's hard to compete with latest compilers in
terms of efficiency. It is, however, a very good way to gain a better understanding of assembly. Feel free,
therefore, to take any assembly code from this book and try to make it shorter. However, don't forget to
test what you have written.

Optimization levels and debug information

Source code can be compiled by different compilers with various optimization levels. A typical compiler
has about three such levels, where level zero means disable optimization. Optimization can also be tar-
geted towards code size or code speed. A non-optimizing compiler is faster and produces more under-
standable (albeit verbose) code, whereas an optimizing compiler is slower and tries to produce code that
runs faster (but is not necessarily more compact). In addition to optimization levels, a compiler can in-
clude in the resulting file some debug information, thus producing code for easy debugging. One of the
important features of the “debug’ code is that it might contain links between each line of the source code
and the respective machine code addresses. Optimizing compilers, on the other hand, tend to produce
output where entire lines of source code can be optimized away and thus not even be present in the re-
sulting machine code. Reverse engineers can encounter either version, simply because some developers
turn on the compiler’s optimization flags and others do not. Because of this, we’ll try to work on examples
of both debug and release versions of the code featured in this book, where possible.

LIn fact, he still does it when he can’t understand what a particular bit of code does.

1.2. SOME BASICS
1.2 Some basics

1.2.1 A short introduction to the CPU

The CPU is the device that executes the machine code a program consists of.
A short glossary:

Instruction : A primitive CPU command. The simplest examples include: moving data between registers,
working with memory, primitive arithmetic operations. As a rule, each CPU has its own instruction
set architecture (ISA?).

Machine code : Code that the CPU directly processes. Each instruction is usually encoded by several
bytes.

Assembly language : Mnemonic code and some extensions like macros that are intended to make a
programmer’s life easier.

CPU register : Each CPU has a fixed set of general purpose registers (GPR3). ~ 8 in x86, ~ 16 in x86-
64, ~ 16 in ARM. The easiest way to understand a register is to think of it as an untyped temporary
variable. Imagine if you were working with a high-level PL and could only use eight 32-bit (or 64-bit)
variables. Yet a lot can be done using just these!

One might wonder why there needs to be a difference between machine code and a PL. The answer lies
in the fact that humans and CPUs are not alike—it is much easier for humans to use a high-level PL like
C/C++, Java, Python, etc., but it is easier for a CPU to use a much lower level of abstraction. Perhaps
it would be possible to invent a CPU that can execute high-level PL code, but it would be many times
more complex than the CPUs we know of today. In a similar fashion, it is very inconvenient for humans
to write in assembly language, due to it being so low-level and difficult to write in without making a huge
number of annoying mistakes. The program that converts the high-level PL code into assembly is called
a compiler. *.

A couple of words about different ISAs

The x86 ISA has always been one with variable-length instructions, so when the 64-bit era came, the x64
extensions did not impact the ISA very significantly. In fact, the x86 ISA still contains a lot of instructions
that first appeared in 16-bit 8086 CPU, yet are still found in the CPUs of today. ARM is a RISC> CPU
designed with constant-length instructions in mind, which had some advantages in the past. In the very
beginning, all ARM instructions were encoded in 4 bytes®. This is now referred to as “ARM mode”. Then
they thought it wasn’t as frugal as they first imagined. In fact, most used CPU instructions’ in real world
applications can be encoded using less information. They therefore added another ISA, called Thumb,
where each instruction was encoded in just 2 bytes. This is now referred as “Thumb mode”. However, not
all ARM instructions can be encoded in just 2 bytes, so the Thumb instruction set is somewhat limited. Itis
worth noting that code compiled for ARM mode and Thumb mode may of course coexist within one single
program. The ARM creators thought Thumb could be extended, giving rise to Thumb-2, which appeared
in ARMv7. Thumb-2 still uses 2-byte instructions, but has some new instructions which have the size of
4 bytes. There is a common misconception that Thumb-2 is a mix of ARM and Thumb. This is incorrect.
Rather, Thumb-2 was extended to fully support all processor features so it could compete with ARM mode—
a goal that was clearly achieved, as the majority of applications for iPod/iPhone/iPad are compiled for the
Thumb-2 instruction set (admittedly, largely due to the fact that Xcode does this by default). Later the
64-bit ARM came out. This ISA has 4-byte instructions, and lacked the need of any additional Thumb mode.
However, the 64-bit requirements affected the ISA, resulting in us now having three ARM instruction sets:
ARM mode, Thumb mode (including Thumb-2) and ARM64. These ISAs intersect partially, but it can be
said that they are different ISAs, rather than variations of the same one. Therefore, we would try to add
fragments of code in all three ARM ISAs in this book. There are, by the way, many other RISC ISAs with
fixed length 32-bit instructions, such as MIPS, PowerPC and Alpha AXP.

2|nstruction Set Architecture

3General Purpose Registers

40ld-school Russian literature also use term “translator”.

5Reduced instruction set computing

6By the way, fixed-length instructions are handy because one can calculate the next (or previous) instruction address without
effort. This feature will be discussed in the switch() operator (1.15.2 on page 174) section.

"These are MOV/PUSH/CALL/Jcc

1.2. SOME BASICS
1.2.2 Numeral systems

Humans accustomed to decimal numeral system probably because almost all ones has 10 fingers. Nev-
ertheless, number 10 has no significant meaning in science and mathematics. Natural numeral system
in digital electronics is binary: 0 is for absence of current in wire and 1 for presence. 10 in binary is 2 in
decimal; 100 in binary is 4 in decimal and so on.

If the numeral system has 10 digits, it has radix (or base) of 10. Binary numeral system has radix of 2.

Important things to recall: 1) number is a number, while digit is a term of writing system and is usually
one character; 2) number is not changed when converted to another radix: writing notation is.

How to convert a number from one radix to another?

Positional notation is used almost everywhere, this means, a digit (number placed in single character) has
some weight depending on where it is placed. If 2 is placed at the rightmost place, it's 2. If it is placed at
the place one digit before rightmost, it's 20.

What does 1234 stand for?

10%-1+10%-2+10"-3+1-4 = 1234 0r 10001 +100-2+10-3 +4 = 1234

Same story for binary numbers, but base is 2 instead of 10. What does 0b101011 stand for?
2014240423 1+22.04+2'-14+2°.1=430r32-1+16-0+8-1+4-04+2-1+1=43

Positional notation can be opposed to non-positional notation such as Roman numeric system &. Perhaps,
humankind switched to positional notation because it’s easier to do basic operations (addition, multipli-
cation, etc.) on paper by hand.

Indeed, binary numbers can be added, subtracted and so on in the very same as taught in schools, but
only 2 digits are available.

Binary numbers are bulky when represented in source code and dumps, so that is where hexadecimal
numeral system can be used. Hexadecimal radix uses 0..9 numbers and also 6 Latin characters: A..F.
Each hexadecimal digit takes 4 bits or 4 binary digits, so it's very easy to convert from binary number to
hexadecimal and back, even manually, in one’s mind.

hexadecimal | binary | decimal
0 0000 | O
1 0001 1
2 0010 |2
3 0011 3
4 0100 |4
5 0101 5
6 0110 | 6
7 0111 7
8 1000 | 8
9 1001 |9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

How to understand, which radix is currently used?

Decimal numbers are usually written as is, i.e., 1234. But some assemblers allows to make emphasis on
decimal radix and this number can be written with "d"” suffix: 1234d.

Binary numbers sometimes prepended with "0b” prefix: 0b100110111 (GCC® has non-standard language
extension for this!®). There is also another way: "b” suffix, for example: 100110111b. I'll try to stick to
"0b” prefix throughout the book for binary numbers.

8 About numeric system evolution, see [Donald E. Knuth, The Art of Computer Programming, Volume 2, 3rd ed., (1997), 195-213.]
9GNU Compiler Collection
Ohttps://gcc.gnu.org/onlinedocs/gcc/Binary- constants.html

https://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html

1.2. SOME BASICS

Hexadecimal numbers are prepended with "0x” prefix in C/C++ and other PLs: 0x1234ABCD. Or they are
has "h” suffix: 1234ABCDh - this is common way of representing them in assemblers and debuggers. If
the number is started with A..F digit, O is to be added before: OABCDEFh. I'll try to stick to "0x” prefix
throughout the book for hexadecimal numbers.

Should one learn to convert numbers in mind? A table of 1-digit hexadecimal numbers can easily be
memorized. As of larger numbers, probably, it's not worth to torment yourself.

Perhaps, the most visible to all people hexadecimal numbers are in URL!!s. This is the way how non-Latin
characters are encoded. For example: https://en.wiktionary.org/wiki/na%C3%AFvet%C3%A9 is the
URL of Wiktionary article about “naiveté” word.

Octal radix

Another numeral system heavily used in past of computer programming is octal: there are 8 digits (0..7)
and each is mapped to 3 bits, so it's easy to convert numbers back and forth. It has been superseded by
hexadecimal system almost everywhere, but surprisingly, there is *NIX utility used by many people often
which takes octal number as argument: chmod .

As many *NIX users know, chmod argument can be a number of 3 digits. The first one is rights for owner
of file, second is rights for group (to which file belongs), third is for everyone else. And each digit can be
represented in binary form:

decimal | binary | meaning
7 111 rwx

6 110 rw-

5 101 r-x

4 100 r--

3 011 -WX

2 010 -w-

1 001 ==X

0 000 -—-

So each bit is mapped to a flag: read/write/execute.

Now the reason why I'm talking about chmod here is that the whole number in argument can be repre-
sented as octal number. Let's take for example, 644. When you run chmod 644 file, you set read/write
permissions for owner, read permissions for group and again, read permissions for everyone else. Let's
convert 644 octal number to binary, this will be 110100100, or (in groups of 3 bits) 110 100 100 .

Now we see that each triplet describe permissions for owner/group/others: first is rw- , second is r--
and third is r-- .

Octal numeral system was also popular on old computers like PDP-8, because word there could be 12,
24 or 36 bits, and these numbers are divisible by 3, so octal system was natural on that environment.
Nowadays, all popular computers employs word/address size of 16, 32 or 64 bits, and these numbers are
divisible by 4, so hexadecimal system is more natural here.

Octal numeral system is supported by all standard C/C++ compilers. This is source of confusion some-
times, because octal numbers are encoded with zero prepended, for example, 0377 is 255. And some-
times, you may make a typo and write "09” instead of 9, and the compiler wouldn’t allow you. GCC may
report something like that:

error: invalid digit "9" in octal constant.

Divisibility
When you see a decimal number like 120, you can quickly deduce that it's divisible by 10, because the
last digit is zero. In the same way, 123400 is divisible by 100, because two last digits are zeros.

Likewise, hexadecimal number 0x1230 is divisible by 0x10 (or 16), 0x123000 is divisible by 0x1000 (or
4096), etc.

11yniform Resource Locator

https://en.wiktionary.org/wiki/na%C3%AFvet%C3%A9

1.3. EMPTY FUNCTION
Binary number Ob1000101000 is divisible by 0b1000 (8), etc.

This property can be used often to realize quickly if a size of some block in memory is padded to some
boundary. For example, sections in PE!? files are almost always started at addresses ending with 3 hex-
adecimal zeros: 0x41000, 0x10001000, etc. The reason behind this is in the fact that almost all PE
sections are padded to boundary of 0x1000 (4096) bytes.

Multi-precision arithmetic and radix
Multi-precision arithmetic uses huge numbers, and each one may be stored in several bytes. For example,
RSA keys, both public and private, are spanning up to 4096 bits and maybe even more.

In [Donald E. Knuth, The Art of Computer Programming, Volume 2, 3rd ed., (1997), 265] we can find
the following idea: when you store multi-precision number in several bytes, the whole number can be
represented as having a radix of 2% = 256, and each digit goes to corresponding byte. Likewise, if you store
multi-precision number in several 32-bit integer values, each digit goes to each 32-bit slot, and you may
think about this number as stored in radix of 232,

Pronouncement

Numbers in non-decimal base are usually pronounced by one digit: “one-zero-zero-one-one-...”. Words
like “ten”, “thousand”, etc, are usually not pronounced, because it will be confused with decimal base
then.

Floating point numbers

To distinguish floating point numbers from integer ones, they are usually written with “.0” at the end, like
0.0, 123.0, etc.

1.3 Empty function

The simplest possible function is arguably one that does nothing:

Listing 1.1: C/C++ Code

void f()
{

};

return;

Lets compile it!

1.3.1 x86

Here’'s what both the optimizing GCC and MSVC compilers produce on the x86 platform:
Listing 1.2: Optimizing GCC/MSVC (assembly output)

ret

There is just one instruction: RET , which returns execution to the caller.

12portable Executable

1.3. EMPTY FUNCTION

1.3.2 ARM
Listing 1.3: Optimizing Keil 6/2013 (ARM mode) assembly output
f PROC
BX lr
ENDP

The return address is not saved on the local stack in the ARM ISA, but rather in the link register, so the
BX LR instruction causes execution to jump to that address—effectively returning execution to the caller.

1.3.3 MIPS

There are two naming conventions used in the world of MIPS when naming registers: by number (from $0
to $31) or by pseudo name ($V0, $A0, etc.).

The GCC assembly output below lists registers by number:

Listing 1.4: Optimizing GCC 4.4.5 (assembly output)

j $31
nop

...while IDA®3 does it—by their pseudo names:

Listing 1.5: Optimizing GCC 4.4.5 (IDA)

j $ra
nop

The first instruction is the jump instruction (J or JR) which returns the execution flow to the caller, jumping
to the address in the $31 (or $RA) register.

This is the register analogous to LR* in ARM.

The second instruction is NOP*>, which does nothing. We can ignore it so far.

A note about MIPS instruction/register names

Register and instruction names in the world of MIPS are traditionally written in lowercase. However, for
the sake of consistency, we’ll stick to using uppercase letters, as it is the convention followed by all other
ISAs featured this book.

1.3.4 Empty functions in practice

Despite the fact empty functions are useless, they are quite frequent in low-level code.
First of all, debugging functions are quite popular, like this one:

Listing 1.6: C/C++ Code

void dbg print (const char *fmt, ...)
{
#ifdef DEBUG
// open log file
// write to log file
// close log file
#endif
b

void some function()

{

13 |Interactive Disassembler and debugger developed by Hex-Rays
141 ink Register
15No OPeration

https://hex-rays.com/

1.4. RETURNING VALUE

dbg print ("we did something\n");

i

In non-debug build (e.g., “release”), DEBUG is not defined, so dbg print() function, despite still being
called during execution, will be empty.

Another popular way of software protection is make several builds: one for legal customers, and a demo
build. Demo build can lack some important functions, like this:

Listing 1.7: C/C++ Code

void save file ()
{
#ifndef DEMO

// actual saving code
#endif
I

save file() function can be called when user click File->Save menu. Demo version may be delivered

with this menu item disabled, but even if software cracker will enable it, empty function with no useful
code will be called.

IDA marks such functions with names like nullsub 00, nullsub 01, etc.

1.4 Returning value

Another somple function is the one that simply returns a constant value:
Here it is:

Listing 1.8: C/C++ Code

int f()
{

};

return 123;

Lets compile it.

1.4.1 x86

Here’s what both the optimizing GCC and MSVC compilers produce on the x86 platform:
Listing 1.9: Optimizing GCC/MSVC (assembly output)

mov eax, 123
ret

There are just two instructions: the first places the value 123 into the EAX register, which is used by
convention for storing the return value and the second one is RET , which returns execution to the caller.

The caller will take the result from the EAX register.

1.4.2 ARM

There are a few differences on the ARM platform:

1.5. HELLO, WORLD!
Listing 1.10: Optimizing Keil 6/2013 (ARM mode) ASM Output

f PROC
MoV ro,#0x7b ; 123
BX 1r
ENDP

ARM uses the register RO for returning the results of functions, so 123 is copied into RO .

It is worth noting that MOV is a misleading name for the instruction in both x86 and ARM ISAs.

The data is not in fact moved, but copied.

1.4.3 MIPS

The GCC assembly output below lists registers by number:

Listing 1.11: Optimizing GCC 4.4.5 (assembly output)

] $31
i $2,123 # Ox7b

...while IDA does it—by their pseudo names:

Listing 1.12: Optimizing GCC 4.4.5 (IDA)

jr $ra
1i $v0, Ox7B

The $2 (or $V0) register is used to store the function’s return value. LI stands for “Load Immediate” and
is the MIPS equivalent to MOV .

The other instruction is the jump instruction () or JR) which returns the execution flow to the caller.

You might be wondering why positions of the load instruction (LI) and the jump instruction (J or JR) are
swapped. This is due to a RISC feature called “branch delay slot”.

The reason this happens is a quirk in the architecture of some RISC ISAs and isn’t important for our
purposes—we just must keep in mind that in MIPS, the instruction following a jump or branch instruction
is executed before the jump/branch instruction itself.

As a consequence, branch instructions always swap places with the instruction which must be executed
beforehand.

1.4.4 In practice

Functions which merely returns 1 (true) or O (false) are very frequent in practice.

1.5 Hello, world!

Let’s use the famous example from the book [Brian W. Kernighan, Dennis M. Ritchie, The C Programming
Language, (1988)1:

#include <stdio.h>

int main()

{
printf("hello, world\n");
return 0;

1.5. HELLO, WORLD!
1.5.1 x86

MSVC

Let’s compile it in MSVC 2010:

cl l.cpp /Fal.asm

(/Fa option instructs the compiler to generate assembly listing file)

Listing 1.13: MSVC 2010

CONST SEGMENT

$5G3830 DB "hello, world', OAH, OOGH
CONST ENDS

PUBLIC main

EXTRN printf:PROC

; Function compile flags: /0dtp

_TEXT SEGMENT

~main PROC
push ebp
mov ebp, esp
push OFFSET $5SG3830
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

~main ENDP

_TEXT ENDS

MSVC produces assembly listings in Intel-syntax. The difference between Intel-syntax and AT&T-syntax
will be discussed in 1.5.1 on page 11.

The compiler generated the file, 1.0bj , which is to be linked into 1.exe . In our case, the file contains

two segments: CONST (for data constants) and TEXT (for code).

The string hello, world in C/C++ has type const char[] [Bjarne Stroustrup, The C++ Programming
Language, 4th Edition, (2013)p176, 7.3.2], but it does not have its own name. The compiler needs to deal

with the string somehow so it defines the internal name $5SG3830 for it.

That is why the example may be rewritten as follows:

#include <stdio.h>

const char $5G3830[]="hello, world\n";

int main()

{
printf($5SG3830);
return 0;

}

Let’s go back to the assembly listing. As we can see, the string is terminated by a zero byte, which is
standard for C/C++ strings. More about C/C++ strings: 5.4.1 on page 709.

In the code segment, TEXT , there is only one function so far: main() . The function main() starts with
prologue code and ends with epilogue code (like almost any function) 6.

After the function prologue we see the call to the printf() function:

CALL printf . Before the call the string address (or a pointer to it) containing our greeting is placed on
the stack with the help of the PUSH instruction.

When the printf() function returns the control to the main() function, the string address (or a pointer

to it) is still on the stack. Since we do not need it anymore, the stack pointer (the ESP register) needs to
be corrected.

16You can read more about it in the section about function prologues and epilogues (1.6 on page 30).

9

1.5. HELLO, WORLD!

ADD ESP, 4 means add 4 to the ESP register value.

Why 47 Since this is a 32-bit program, we need exactly 4 bytes for address passing through the stack.
If it was x64 code we would need 8 bytes. ADD ESP, 4 is effectively equivalent to POP register but
without using any register?’.

For the same purpose, some compilers (like the Intel C++ Compiler) may emit POP ECX instead of ADD
(e.g., such a pattern can be observed in the Oracle RDBMS code as it is compiled with the Intel C++ com-
piler). This instruction has almost the same effect but the ECX register contents will be overwritten. The

Intel C++ compiler supposedly uses POP ECX since this instruction’s opcode is shorter than ADD ESP, X
(1 byte for POP against 3 for ADD).

Here is an example of using POP instead of ADD from Oracle RDBMS:

Listing 1.14: Oracle RDBMS 10.2 Linux (app.o file)

.text:0800029A push ebx
.text:0800029B call gksfroChild
.text:080002A0 pop ecx

After calling printf() , the original C/C++ code contains the statement return 0 —return O as the
result of the main() function.

In the generated code this is implemented by the instruction XOR EAX, EAX.

XOR is in fact just “eXclusive OR”*8 but the compilers often use it instead of MOV EAX, 0 —again because
it is a slightly shorter opcode (2 bytes for XOR against 5 for MOV).

Some compilers emit SUB EAX, EAX, which means SUBtract the value in the EAX from the value in EAX,
which, in any case, results in zero.

The last instruction RET returns the control to the caller. Usually, this is C/C++ CRT!? code, which, in
turn, returns control to the OS.

GCC

Now let’s try to compile the same C/C++ code in the GCC 4.4.1 compiler in Linux: gcc 1.c -0 1. Next,

with the assistance of the IDA disassembler, let’s see how the main() function was created. IDA, like
MSVC, uses Intel-syntax?°.

Listing 1.15: code in IDA

main proc near
var_10 = dword ptr -10h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aHelloWorld ; "hello, world\n"
mov [esp+10h+var_10], eax
call _printf
mov eax, 0
leave
retn
main endp

The result is almost the same. The address of the hello, world string (stored in the data segment) is
loaded in the EAX register first and then it is saved onto the stack.

17CPU flags, however, are modified

Bwikipedia

19C runtime library

20\e could also have GCC produce assembly listings in Intel-syntax by applying the options -S -masm=intel .

10

http://go.yurichev.com/17118

1.5. HELLO, WORLD!
In addition, the function prologue has AND ESP, OFFFFFFFOh —this instruction aligns the ESP register
value on a 16-byte boundary. This results in all values in the stack being aligned the same way (The CPU
performs better if the values it is dealing with are located in memory at addresses aligned on a 4-byte or
16-byte boundary)?*.

SUB ESP, 10h allocates 16 bytes on the stack. Although, as we can see hereafter, only 4 are necessary
here.

This is because the size of the allocated stack is also aligned on a 16-byte boundary.
The string address (or a pointer to the string) is then stored directly onto the stack without using the PUSH
instruction. var_10 —is a local variable and is also an argument for printf() . Read about it below.

Then the printf() function is called.

Unlike MSVC, when GCC is compiling without optimization turned on, it emits MOV EAX, 0 instead of a
shorter opcode.

The last instruction, LEAVE —is the equivalent of the MOV ESP, EBP and POP EBP instruction pair —in
other words, this instruction sets the stack pointer (ESP) back and restores the EBP register to its initial
state. This is necessary since we modified these register values (ESP and EBP) at the beginning of the
function (by executing MOV EBP, ESP / AND ESP, ..).

GCC: AT&T syntax

Let’'s see how this can be represented in assembly language AT&T syntax. This syntax is much more
popular in the UNIX-world.

Listing 1.16: let’'s compile in GCC 4.7.3

gcc -S'11.c

We get this:
Listing 1.17: GCC 4.7.3

file "1 1.c"

.section .rodata
.LCO:
.string "hello, world\n"
.text
.globl main
.type main, @function
main:
.LFBO:
.cfi startproc
pushl %ebp
.cfi def cfa offset 8
.cfi offset 5, -8
movl %esp, %ebp
.cfi def cfa register 5
andl $-16, %esp
subl $16, %esp
movl $.LCO, (%esp)
call printf
movl $0, %eax
leave
.cfi restore 5
.cfi def cfa 4, 4
ret
.cfi_endproc
.LFEO:
.size main, .-main
.ident "GCC: (Ubuntu/Linaro 4.7.3-lubuntul) 4.7.3"
.section .note.GNU-stack,"",@progbits

21\yikipedia: Data structure alignment

11

http://go.yurichev.com/17013

1.5. HELLO, WORLD!
The listing contains many macros (beginning with dot). These are not interesting for us at the moment.

For now, for the sake of simplification, we can ignore them (except the .string macro which encodes a
null-terminated character sequence just like a C-string). Then we’ll see this 22:

Listing 1.18: GCC 4.7.3

.LCO:
.string "hello, world\n"
main:
pushl %ebp
movl %esp, S%ebp
andl $-16, %esp
subl $16, %esp
movl $.LCO, (%esp)
call printf
movl $0, %eax
leave
ret

Some of the major differences between Intel and AT&T syntax are:
* Source and destination operands are written in opposite order.
In Intel-syntax: <instruction> <destination operand> <source operand>.
In AT&T syntax: <instruction> <source operand> <destination operand>.

Here is an easy way to memorize the difference: when you deal with Intel-syntax, you can imagine
that there is an equality sign (=) between operands and when you deal with AT&T-syntax imagine
there is a right arrow (—) 23.

* AT&T: Before register names, a percent sign must be written (%) and before numbers a dollar sign
($). Parentheses are used instead of brackets.

* AT&T: A suffix is added to instructions to define the operand size:
q — quad (64 bits)

| — long (32 bits)

w — word (16 bits)

- b — byte (8 bits)

Let's go back to the compiled result: it is identical to what we saw in IDA. With one subtle difference:
OFFFFFFFOh is presented as $-16 . It is the same thing: 16 in the decimal system is 0x10 in hexadec-

imal. -0x10 is equal to OXFFFFFFFO (for a 32-bit data type).

One more thing: the return value is to be set to 0 by using the usual MOV, not XOR. MOV just loads a
value to a register. Its name is a misnomer (data is not moved but rather copied). In other architectures,
this instruction is named “LOAD” or “STORE” or something similar.

String patching (Win32)

We can easily find “hello, world” string in executable file using Hiew:

22Thjs GCC option can be used to eliminate “unnecessary” macros: -fno-asynchronous-unwind-tables
23By the way, in some C standard functions (e.g., memcpy(), strcpy()) the arguments are listed in the same way as in Intel-syntax:
first the pointer to the destination memory block, and then the pointer to the source memory block.

12

1.5. HELLO, WORLD!

Hiew: hw_spanish.exe

Figure 1.1: Hiew

And we can try to translate our message to Spanish language:

C:\tmp\hw_spanish.exe BEFWO EDITMO
3 9@ PO 0 D PO PO ¢

1%

75-6E 64 |
FF-FF FF
@-CD 5D

Figure 1.2: Hiew

Spanish text is one byte shorter than English, so we also add 0x0A byte at the end (\n) and zero byte.
It works.

What if we want to insert longer message? There are some zero bytes after original English text. Hard to
say if they can be overwritten: they may be used somewhere in CRT code, or maybe not. Anyway, you
can overwrite them only if you really know what you are doing.

String patching (Linux x64)

Let’s try to patch Linux x64 executable using rada.re:

Listing 1.19: rada.re session

dennis@bigbox ~/tmp % gcc hw.c

dennis@bigbox ~/tmp % radare2 a.out
-- SHALL WE PLAY A GAME?
[0x00400430]> / hello
Searching 5 bytes from 0x00400000 to 0x00601040: 68 65 6¢ 6¢C 6f
Searching 5 bytes in [0x400000-0x601040]
hits: 1
0x004005c4 hit@ 0 .HHhello, world;0.

[0x00400430]> s 0x004005c4
[0x004005c4]> px

- offset - 01 23 45 67 89 AB CD EF 0123456789ABCDEF
0x004005c4 6865 6¢c6C 6f2Cc 2077 672 6CH64 0000 0000 hello, world....

0x004005d4 011b 033b 3000 0000 0500 0000 1lcfe ffff ...;0...........
0x004005e4 7c00 0000 5cfe ffff 4c00 0000 52ff ffff |...\...L...R...
0x004005f4 a400 0000 6cff ffff c400 0000 dcff ffffL...........
0x00400604 0cO1 0000 1400 COOO0 0OGO 0000 017a 5200 zR.

13

1.5. HELLO, WORLD!

0x00400614 0178 1001 1bOc 0708 9001 0710 1400 0000 .X..............
0x00400624 1c00 0000 08fe ffff 2a00 0000 0000 0OEO “Yoaooaoo
0x00400634 0000 0000 1400 COO0O0 0OGO 0000 017a 5200 zR.
0x00400644 0178 1001 1bOc 0708 9001 0000 24060 0000 .X.......... $...
0x00400654 1c00 0000 98fd ffff 3000 0OOO 000e 1046 @ocooac F
0x00400664 0el8 4a0f Ob77 0880 003f la3b 2a33 2422 ..J..w...7.;*3%"
0x00400674 0000 0000 1coO 0000 4400 0000 abfe ffff Docooaoo
0x00400684 1500 0000 0041 0elO 8602 430d 0650 0cO7 {No 00 0GoolPa o
0x00400694 0800 0000 4400 0000 6400 0000 abfe ffffD...d.......
0x004006a4 6500 0000 0042 0elO 8f02 420e 188e 0345 e....B....B....E
0x004006b4 0e20 8d04 420e 288c 0548 0e30 8606 480e . ..B.(..H.0..H.

[0x004005c4]1> oo+
File a.out reopened in read-write mode

[0x004005c4]> w hola, mundo\x00
[0x004005c4]> q

dennis@bigbox ~/tmp % ./a.out
hola, mundo

What | do here: | search for “hello” string using / command, then | set cursor (or seek in rada.re terms) to
that address. Then | want to be sure that this is really that place: px dumps bytes there. oo+ switches

rada.re to read-write mode. w writes ASCII string at the current seek. Note \00 at the end—this is zero
byte. g quits.
Software localization of MS-DOS era

The way | described was a common way to translate MS-DOS software to Russian language back to 1980’s
and 1990’s. Russian words and sentences are usually slightly longer than its English counterparts, so that
is why localized software has a lot of weird acronyms and hardly readable abbreviations.

Perhaps, this also happened to other languages during that era.

1.5.2 x86-64
MSVC: x86-64

Let’s also try 64-bit MSVC:
Listing 1.20: MSVC 2012 x64

$5G2989 DB 'hello, world', OAH, OOGH
main PROC
sub rsp, 40
lea rcx, OFFSET FLAT:$5G2989
call printf
xor eax, eax
add rsp, 40
ret 0
main ENDP

In x86-64, all registers were extended to 64-bit and now their names have an R- prefix. In order to use
the stack less often (in other words, to access external memory/cache less often), there exists a popular
way to pass function arguments via registers (fastcall) 6.1.3 on page 733. l.e., a part of the function
arguments is passed in registers, the rest—via the stack. In Win64, 4 function arguments are passed in

the RCX, RDX, R8, R9 registers. That is what we see here: a pointer to the string for printf() is
now passed not in the stack, but in the RCX register. The pointers are 64-bit now, so they are passed in
the 64-bit registers (which have the R- prefix). However, for backward compatibility, it is still possible

to access the 32-bit parts, using the E- prefix. This is how the RAX/EAX/AX /AL register looks like in
x86-64:

14

1.5. HELLO, WORLD!

Byte number:
7th | 6th [5th | 4th [3rd | 2nd | 1st | Oth
RAxx64
\ EAX

AX
AH [AL

The main() function returns an int-typed value, which is, in C/C++, for better backward compatibility

and portability, still 32-bit, so that is why the EAX register is cleared at the function end (i.e., the 32-bit

part of the register) instead of RAX. There are also 40 bytes allocated in the local stack. This is called
the “shadow space”, about which we are going to talk later: 1.10.2 on page 101.

GCC: x86-64

Let’'s also try GCC in 64-bit Linux:
Listing 1.21: GCC 4.4.6 x64

.string "hello, world\n"

main:
sub rsp, 8
mov edi, OFFSET FLAT:.LCO ; "hello, world\n"
Xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

A method to pass function arguments in registers is also used in Linux, *BSD and Mac OS X is [Michael Matz,
Jan Hubicka, Andreas Jaeger, Mark Mitchell, System V Application Binary Interface. AMD64 Architecture
Processor Supplement, (2013)] 24,

The first 6 arguments are passed in the RDI, RSI, RDX, RCX, R8, R9 registers, and the rest—via the
stack.

So the pointer to the string is passed in EDI (the 32-bit part of the register). But why not use the 64-bit
part, RDI ?

It is important to keep in mind that all MOV instructions in 64-bit mode that write something into the lower
32-bit register part also clear the higher 32-bits (as stated in Intel manuals: 11.1.4 on page 994).

l.e., the MOV EAX, 011223344h writes a value into RAX correctly, since the higher bits will be cleared.

If we open the compiled object file (.0), we can also see all the instructions’ opcodes 2°:
Listing 1.22: GCC 4.4.6 x64

.text:00000000004004D0 main proc near

.text:00000000004004D0 48 83 EC 08 sub rsp, 8

.text:00000000004004D4 BF E8 05 40 00 mov edi, offset format ; "hello, world\n"
.text:00000000004004D9 31 CO xor eax, eax

.text:00000000004004DB E8 D8 FE FF FF call _printf

.text:00000000004004E0 31 CO xor eax, eax

.text:00000000004004E2 48 83 C4 08 add rsp, 8

.text:00000000004004E6 C3 retn

.text:00000000004004E6 main endp

As we can see, the instruction that writes into EDI at 0x4004D4 occupies 5 bytes. The same instruction

writing a 64-bit value into RDI occupies 7 bytes. Apparently, GCC is trying to save some space. Besides,
it can be sure that the data segment containing the string will not be allocated at the addresses higher
than 4GiB.

We also see that the EAX register has been cleared before the printf() function call. This is done

because according to ABI!?® standard mentioned above, the number of used vector registers is passed
in EAX in *NIX systems on x86-64.

24Also available as https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
25This must be enabled in Options — Disassembly - Number of opcode bytes
26ABI!

15

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

1.5. HELLO, WORLD!
Address patching (Win64)

When our example compiled in MSVC2013 using \MD switch (meaning smaller executable due to MSVCR*.DLL
file linkage), the main() function came first and can be easily found:

=101 x|

rcx, [PP0R0R0R000002401]:
CommandSelect: Off

Figure 1.3: Hiew

As an experiment, we can increment address of the pointer by 1:

16

1.5. HELLO, WORLD!

| Hiew: hw2.exe o | |

Hiew 8.02 (c)SEN

rsp,
rex, [
printf
eax, eax

rs

/FEFFFF
CAEFFFFF

D 3¢
2PutBlk

Figure 1.4: Hiew

Hiew shows “ello, world” string. And when we run patched executable, this very string is printed.

Pick another string from binary image (Linux x64)

The binary file I've got when | compile our example using GCC 5.4.0 on Linux x64 box has many other text
strings: they are mostly imported function names and library names.

| run objdump to get contents of all sections of the compiled file:

$ objdump -s a.out
a.out: file format elf64-x86-64

Contents of section .interp:

400238 2f6c6962 36342f6Cc 642d6c69 6€75782d /1ib64/1d-linux-
400248 7838362d 36342e73 6f2e3200 x86-64.50.2.
Contents of section .note.ABI-tag:

400254 04000000 10000000 01000000 474€5500 GNU.
400264 00000000 02000000 06000000 20000000
Contents of section .note.gnu.build-id:

400274 04000000 14000000 03000000 474e5500 GNU.
400284 fe461178 5bb710b4 bbf2aca8 5eclecl® .F.x[....... N
400294 cf3f7ae4d .7z,

It’s not a problem to pass address of the text string “/lib64/ld-linux-x86-64.50.2” to printf() call:

#include <stdio.h>

17

1.5. HELLO, WORLD!

int main()

{
printf(0x400238);
return 0;

}

Hard to believe, this code prints mentioned string.

Change the address to 0x400260 , and the “GNU” string will be printed. The address is true for my specific
GCC version, GNU toolset, etc. On your system, executable may be slightly different, and all addresses
will also be different. Also, adding/removing code to/from this source code will probably shift all addresses
back and forth.

1.5.3 GCC—one more thing

The fact that an anonymous C-string has const type (1.5.1 on page 9), and that C-strings allocated in
constants segment are guaranteed to be immutable, has an interesting consequence: the compiler may
use a specific part of the string.

Let’s try this example:

#include <stdio.h>

int f1()
{
printf ("world\n");
}
int f2()
{
printf ("hello world\n");
}
int main()
{
f1();
2();
}

Common C/C++-compilers (including MSVC) allocate two strings, but let’s see what GCC 4.8.1 does:

Listing 1.23: GCC 4.8.1 + IDA listing

fl proc near
S = dword ptr -1Ch
sub esp, 1Ch
mov [esp+1Ch+s], offset s ; "world\n"
call _puts
add esp, 1Ch
retn
fl endp
f2 proc near
S = dword ptr -1Ch
sub esp, 1Ch
mov [esp+1Ch+s], offset aHello ; "hello "
call _puts
add esp, 1Ch
retn
f2 endp
aHello db 'hello '
S db 'world',60xa,0

18

1.5. HELLO, WORLD!

Indeed: when we print the “hello world” string these two words are positioned in memory adjacently and
puts() called from f2() function is not aware that this string is divided. In fact, it's not divided; it's
divided only “virtually”, in this listing.

When puts() is called from f1() , it uses the “world” string plus a zero byte. puts() is not aware that
there is something before this string!

This clever trick is often used by at least GCC and can save some memory. This is close to string interning.

Another related example is here: 3.2 on page 468.

1.5.4 ARM

For my experiments with ARM processors, several compilers were used:
* Popular in the embedded area: Keil Release 6/2013.
» Apple Xcode 4.6.3 IDE with the LLVM-GCC 4.2 compiler ?7.
* GCC 4.9 (Linaro) (for ARM64), available as win32-executables at http://go.yurichev.com/17325.

32-bit ARM code is used (including Thumb and Thumb-2 modes) in all cases in this book, if not mentioned
otherwise. When we talk about 64-bit ARM here, we call it ARM64.

Non-optimizing Keil 6/2013 (ARM mode)

Let’s start by compiling our example in Keil:

armcc.exe --arm --c90 -00 1.c

The armcc compiler produces assembly listings in Intel-syntax, but it has high-level ARM-processor related
macros 28, but it is more important for us to see the instructions “as is” so let’s see the compiled result in
IDA.

Listing 1.24: Non-optimizing Keil 6/2013 (ARM mode) IDA

.text:00000000 main

.text: 00000000 10 40 2D E9 STMFD SP!, {R4,LR}

.text:00000004 1E OE 8F E2 ADR RO, aHelloWorld ; "hello, world"
.text:00000008 15 19 00 EB BL 2printf

.text:0000000C 00 00 AO E3 MoV RO, #0
.text:00000010 10 80 BD E8 LDMFD SP!, {R4,PC}

.text:000001EC 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF: main+4

In the example, we can easily see each instruction has a size of 4 bytes. Indeed, we compiled our code
for ARM mode, not for Thumb.

The very first instruction, STMFD SP!, {R4,LR} 2°, works as an x86 PUSH instruction, writing the values
of two registers (R4 and LR) into the stack.

Indeed, in the output listing from the armcc compiler, for the sake of simplification, actually shows the
PUSH {r4,1lr} instruction. Butthatis not quite precise. The PUSH instruction is only available in Thumb
mode. So, to make things less confusing, we're doing this in IDA.

This instruction first decrements the SP3! so it points to the place in the stack that is free for new entries,
then it saves the values of the R4 and LR registers at the address stored in the modified SP.

This instruction (like the PUSH instruction in Thumb mode) is able to save several register values at once
which can be very useful. By the way, this has no equivalent in x86. It can also be noted that the STMFD
instruction is a generalization of the PUSH instruction (extending its features), since it can work with any

register, not just with SP. In other words, STMFD may be used for storing a set of registers at the specified
memory address.

271t is indeed so: Apple Xcode 4.6.3 uses open-source GCC as front-end compiler and LLVM code generator
28a.9. ARM mode lacks PUSH / POP instructions

295TMFD30

3lstack pointer. SP/ESP/RSP in x86/x64. SP in ARM.

19

http://go.yurichev.com/17325

1.5. HELLO, WORLD!
The ADR RO, aHelloWorld instruction adds or subtracts the value in the PC3? register to the offset where

the hello, world string is located. How is the PC register used here, one might ask? This is called
“position-independent code”33,

Such code can be executed at a non-fixed address in memory. In other words, this is PC-relative addressing.

The ADR instruction takes into account the difference between the address of this instruction and the
address where the string is located. This difference (offset) is always to be the same, no matter at what
address our code is loaded by the OS. That’s why all we need is to add the address of the current instruction
(from PC) in order to get the absolute memory address of our C-string.

BL 2printf 34 instruction calls the printf() function. Here’s how this instruction works:

» store the address following the BL instruction (@xC) into the LR;

* then pass the control to printf() by writing its address into the PC register.

When printf() finishes its execution it must have information about where it needs to return the control
to. That's why each function passes control to the address stored in the LR register.

That is a difference between “pure” RISC-processors like ARM and CISC3>-processors like x86, where the
return address is usually stored on the stack. Read more about this in next section (1.7 on page 30).

By the way, an absolute 32-bit address or offset cannot be encoded in the 32-bit BL instruction because
it only has space for 24 bits. As we may recall, all ARM-mode instructions have a size of 4 bytes (32 bits).
Hence, they can only be located on 4-byte boundary addresses. This implies that the last 2 bits of the
instruction address (which are always zero bits) may be omitted. In summary, we have 26 bits for offset
encoding. This is enough to encode current_ PC + ~ 32M.

Next, the MOV RO, #0 3° instruction just writes 0 into the RO register. That’s because our C-function

returns 0 and the return value is to be placed in the RO register.

The last instruction LDMFD SP!, R4,PC 3’. It loads values from the stack (or any other memory place) in
order to save them into R4 and PC, and increments the stack pointer SP. It works like POP here.

N.B. The very first instruction STMFD saved the R4 and LR registers pair on the stack, but R4 and PC
are restored during the LDMFD execution.

As we already know, the address of the place where each function must return control to is usually saved
in the LR register. The very first instruction saves its value in the stack because the same register will be

used by our main() function when calling printf() . In the function’s end, this value can be written
directly to the PC register, thus passing control to where our function has been called.

Since main() is usually the primary function in C/C++, the control will be returned to the OS loader or
to a point in a CRT, or something like that.

All that allows omitting the BX LR instruction at the end of the function.

DCB is an assembly language directive defining an array of bytes or ASCII strings, akin to the DB directive
in the x86-assembly language.

Non-optimizing Keil 6/2013 (Thumb mode)

Let’'s compile the same example using Keil in Thumb mode:

armcc.exe --thumb --c90 -00 1.c

We are getting (in IDA):
Listing 1.25: Non-optimizing Keil 6/2013 (Thumb mode) + IDA

.text:00000000 main
.text:00000000 10 B5 PUSH {R4,LR}

32program Counter. IP/EIP/RIP in x86/64. PC in ARM,

33Read more about it in relevant section (6.4.1 on page 746)
34Branch with Link

35Complex instruction set computing

36Meaning MOVe

37 DMFD32 is an inverse instruction of STMFD

20

1.5. HELLO, WORLD!

.text:00000002 CO A0 ADR RO, aHelloWorld ; "hello, world"
.text:00000004 06 FO 2E F9 BL __2printf

.text: 00000008 00 20 MOVS RO, #0

.text:0000000A 10 BD POP {R4,PC}

.text:00000304 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF: main+2

We can easily spot the 2-byte (16-bit) opcodes. This is, as was already noted, Thumb. The BL instruction,
however, consists of two 16-bit instructions. This is because it is impossible to load an offset for the

printf() function while using the small space in one 16-bit opcode. Therefore, the first 16-bit instruction
loads the higher 10 bits of the offset and the second instruction loads the lower 11 bits of the offset.

As was noted, all instructions in Thumb mode have a size of 2 bytes (or 16 bits). This implies it is impossible
for a Thumb-instruction to be at an odd address whatsoever. Given the above, the last address bit may
be omitted while encoding instructions.

In summary, the BL Thumb-instruction can encode an address in current_PC + ~2M.

As for the otherinstructions in the function: PUSH and POP work here just like the described STMFD / LDMFD
only the SP register is not mentioned explicitly here. ADR works just like in the previous example. MOVS
writes 0 into the RO register in order to return zero.

Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Xcode 4.6.3 without optimization turned on produces a lot of redundant code so we’ll study optimized
output, where the instruction count is as small as possible, setting the compiler switch -03 .

Listing 1.26: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

__text:000028C4 _hello _world

_ text:000028C4 80 40 2D E9 STMFD SP!, {R7,LR}
_ text:000028C8 86 06 01 E3 MOV RO, #0x1686
~ text:000028CC 6D 70 A@ E1 MOV R7, SP

_ text:000028D0 00 00 40 E3 MOVT RO, #0

_ text:000028D4 00 00 8F EO@ ADD RO, PC, RO
__text:000028D8 C3 05 00 EB BL _puts

_ text:000028DC 00 00 A® E3 MOV RO, #0

_ text:000028E0 80 80 BD E8 LDMFD Sp!, {R7,PC}

__cstring:00003F62 48 65 6C 6C+aHelloWorld @ DCB "Hello world!",0

The instructions STMFD and LDMFD are already familiar to us.

The MOV instruction just writes the number 0x1686 into the RO register. This is the offset pointing to
the “Hello world!” string.

The R7 register (as it is standardized in [iOS ABI Function Call Guide, (2010)]°°) is a frame pointer. More
on that below.

The MOVT RO, #0 (MOVe Top) instruction writes 0 into higher 16 bits of the register. The issue here is
that the generic MOV instruction in ARM mode may write only the lower 16 bits of the register.

Keep in mind, all instruction opcodes in ARM mode are limited in size to 32 bits. Of course, this limitation
is not related to moving data between registers. That’s why an additional instruction MOVT exists for
writing into the higher bits (from 16 to 31 inclusive). Its usage here, however, is redundant because

the MOV RO, #0x1686 instruction above cleared the higher part of the register. This is supposedly a
shortcoming of the compiler.

The ADD RO, PC, RO instruction adds the value in the PC to the value in the RO, to calculate the abso-
lute address of the “Hello world!” string. As we already know, it is “position-independent code” so this
correction is essential here.

The BL instruction calls the puts() function instead of printf() .

39Also available as http://go.yurichev.com/17276

21

http://go.yurichev.com/17276

1.5. HELLO, WORLD!
GCC replaced the first printf() call with puts() . Indeed: printf() with a sole argument is almost

analogous to puts() .

Almost, because the two functions are producing the same result only in case the string does not contain
printf format identifiers starting with %. In case it does, the effect of these two functions would be different
40

Why did the compiler replace the printf() with puts() ? Presumably because puts() is faster 4!,
Because it just passes characters to stdout without comparing every one of them with the % symbol.

Next, we see the familiar MOV RO, #0 instruction intended to set the RO register to 0.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

By default Xcode 4.6.3 generates code for Thumb-2 in this manner:

Listing 1.27: Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

_text:00002B6C _hello world

__ text:00002B6C 80 B5 PUSH {R7,LR}

~ text:00002B6E 41 F2 D8 30 MOVW RO, #0x13D8
_ text:00002B72 6F 46 MoV R7, SP

~ text:00002B74 CO F2 00 00 MOVT.W RO, #0

_ text:00002B78 78 44 ADD RO, PC

_ text:00002B7A 01 FO 38 EA BLX _puts

_ text:00002B7E 00 20 MOVS RO, #0

__ text:00002B80 80 BD POP {R7,PC}

__cstring:00003E70 48 65 6C 6C 6F 20+aHellowWorld DCB "Hello world!",0xA,0

The BL and BLX instructions in Thumb mode, as we recall, are encoded as a pair of 16-bit instructions. In
Thumb-2 these surrogate opcodes are extended in such a way so that new instructions may be encoded
here as 32-bit instructions.

That is obvious considering that the opcodes of the Thumb-2 instructions always begin with OxFx or
OXEXx .

But in the IDA listing the opcode bytes are swapped because for ARM processor the instructions are
encoded as follows: last byte comes first and after that comes the first one (for Thumb and Thumb-2
modes) or for instructions in ARM mode the fourth byte comes first, then the third, then the second and
finally the first (due to different endianness).

So that is how bytes are located in IDA listings:
» for ARM and ARM64 modes: 4-3-2-1;
* for Thumb mode: 2-1;
» for 16-bit instructions pair in Thumb-2 mode: 2-1-4-3.
So as we can see, the MOVW, MOVT.W and BLX instructions begin with OxFx .

One of the Thumb-2 instructions is MOVW RO, #0x13D8 —it stores a 16-bit value into the lower part of
the RO register, clearing the higher bits.

Also, MOVT.W RO, #0 works just like MOVT from the previous example only it works in Thumb-2.
Among the other differences, the BLX instruction is used in this case instead of the BL .

The difference is that, besides saving the RA%? in the LR register and passing control to the puts()
function, the processor is also switching from Thumb/Thumb-2 mode to ARM mode (or back).

This instruction is placed here since the instruction to which control is passed looks like (it is encoded in
ARM mode):

401t has also to be noted the puts() does not require a ‘\n’ new line symbol at the end of a string, so we do not see it here.

4lciselant.de/projects/gcc_printf/gcc_printf.html
42Return Address

22

http://go.yurichev.com/17063

1.5. HELLO, WORLD!

__symbolstubl:00003FEC puts ; CODE XREF: hello world+E
__symbolstubl:00003FEC 44 FO 9F E5 LDR PC, = imp_ puts

This is essentially a jump to the place where the address of puts() is written in the imports’ section.

So, the observant reader may ask: why not call puts() right at the pointin the code where it is needed?
Because it is not very space-efficient.

Almost any program uses external dynamic libraries (like DLL in Windows, .so in *NIX or .dylib in Mac
0OS X). The dynamic libraries contain frequently used library functions, including the standard C-function

puts() .

In an executable binary file (Windows PE .exe, ELF or Mach-0O) an import section is present. This is a list
of symbols (functions or global variables) imported from external modules along with the names of the
modules themselves.

The OS loader loads all modules it needs and, while enumerating import symbols in the primary module,
determines the correct addresses of each symbol.

In our case, __imp__puts is a 32-bit variable used by the OS loader to store the correct address of the

function in an external library. Then the LDR instruction just reads the 32-bit value from this variable and
writes it into the PC register, passing control to it.

So, in order to reduce the time the OS loader needs for completing this procedure, it is good idea to write
the address of each symbol only once, to a dedicated place.

Besides, as we have already figured out, it is impossible to load a 32-bit value into a register while using
only one instruction without a memory access.

Therefore, the optimal solution is to allocate a separate function working in ARM mode with the sole goal of
passing control to the dynamic library and then to jump to this short one-instruction function (the so-called
thunk function) from the Thumb-code.

By the way, in the previous example (compiled for ARM mode) the control is passed by the BL to the
same thunk function. The processor mode, however, is not being switched (hence the absence of an “X”
in the instruction mnemonic).

More about thunk-functions

Thunk-functions are hard to understand, apparently, because of a misnomer. The simplest way to under-
stand it as adaptors or convertors of one type of jack to another. For example, an adaptor allowing the
insertion of a British power plug into an American wall socket, or vice-versa. Thunk functions are also
sometimes called wrappers.

Here are a couple more descriptions of these functions:

“A piece of coding which provides an address:”, according to P. Z. Ingerman, who invented
thunks in 1961 as a way of binding actual parameters to their formal definitions in Algol-60
procedure calls. If a procedure is called with an expression in the place of a formal parameter,
the compiler generates a thunk which computes the expression and leaves the address of
the result in some standard location.

Microsoft and IBM have both defined, in their Intel-based systems, a “16-bit environment”
(with bletcherous segment registers and 64K address limits) and a “32-bit environment”
(with flat addressing and semi-real memory management). The two environments can both
be running on the same computer and OS (thanks to what is called, in the Microsoft world,
WOW which stands for Windows On Windows). MS and IBM have both decided that the
process of getting from 16- to 32-bit and vice versa is called a “thunk”; for Windows 95,
there is even a tool, THUNK.EXE, called a “thunk compiler”.

(The Jargon File)

Another example we can find in LAPACK library—a “Linear Algebra PACKage"” written in FORTRAN. C/C++
developers also want to use LAPACK, but it’s insane to rewrite it to C/C++ and then maintain several

23

http://go.yurichev.com/17362

ooNOOU, WNE

1.5. HELLO, WORLD!

versions. So there are short C functions callable from C/C++ environment, which are, in turn, call FORTRAN
functions, and do almost anything else:

double Blas Dot Prod(const LaVectorDouble &dx, const LaVectorDouble &dy)

{

assert(dx.size()==dy.size());

integer n = dx.size();

integer incx = dx.inc(), incy = dy.inc();

return F77NAME(ddot) (&n, &dx(0), &incx, &dy(0), &incy);
}

Also, functions like that are called “wrappers”.

ARM64

GCC

Let’'s compile the example using GCC 4.8.1 in ARM64:
Listing 1.28: Non-optimizing GCC 4.8.1 + objdump

0000000000400590 <main>:

400590: a9bf7bfd stp x29, x30, [sp,#-16]!

400594 : 910003fd mov x29, sp

400598: 90000000 adrp X0, 400000 < init-0x3b8>

40059c: 91192000 add x0, x0, #0x648

4005a0: 97ffffald bl 400420 <puts@plt>

4005a4: 52800000 mov wo, #0x0 // #0
4005a8: a8cl7bfd 1dp x29, x30, [sp],#16

4005ac: de5f03co ret

Contents of section .rodata:
400640 01000200 0OOOOOOO 48656cH6Cc 6210200 Hello!..

There are no Thumb and Thumb-2 modes in ARM64, only ARM, so there are 32-bit instructions only. The
Register count is doubled: .2.4 on page 1022. 64-bit registers have X- prefixes, while its 32-bit parts—
W- .

The STP instruction (Store Pair) saves two registers in the stack simultaneously: X29 and X30.

Of course, this instruction is able to save this pair at an arbitrary place in memory, but the SP register is
specified here, so the pair is saved in the stack.

ARM®G64 registers are 64-bit ones, each has a size of 8 bytes, so one needs 16 bytes for saving two registers.

The exclamation mark (“!”) after the operand means that 16 is to be subtracted from SP first, and only
then are values from register pair to be written into the stack. This is also called pre-index. About the
difference between post-index and pre-index read here: 1.32.2 on page 441.

Hence, in terms of the more familiar x86, the first instruction is just an analogue to a pair of PUSH X29

and PUSH X30. X29 is used as FP*3 in ARM64, and X30 as LR, so that's why they are saved in the
function prologue and restored in the function epilogue.

The second instruction copies SP in X29 (or FP). This is made so to set up the function stack frame.

ADRP and ADD instructions are used to fill the address of the string “Hello!” into the X0 register, because
the first function argument is passed in this register. There are no instructions, whatsoever, in ARM that
can store a large number into a register (because the instruction length is limited to 4 bytes, read more
about it here: 1.32.3 on page 442). So several instructions must be utilized. The first instruction (ADRP)
writes the address of the 4KiB page, where the string is located, into X0, and the second one (ADD) just
adds the remainder to the address. More about that in: 1.32.4 on page 444.

43Frame Pointer

24

1.5. HELLO, WORLD!

0x400000 + 0x648 = 0x400648 , and we see our “Hello!” C-string in the .rodata data segment at this
address.

puts() is called afterwards using the BL instruction. This was already discussed: 1.5.4 on page 21.

MOV writes 0 into WO . WO is the lower 32 bits of the 64-bit X0 register:

High 32-bit part | low 32-bit part
X0
\ W0

The function result is returned via X0 and main() returns 0, so that's how the return result is prepared.
But why use the 32-bit part?

Because the int data type in ARM64, just like in x86-64, is still 32-bit, for better compatibility.

So if a function returns a 32-bit int, only the lower 32 bits of X0 register have to be filled.

In order to verify this, let's change this example slightly and recompile it. Now main() returns a 64-bit
value:

Listing 1.29: main() returning a value of uint64 t type

#include <stdio.h>
#include <stdint.h>

uint64_t main()

{
printf ("Hello!\n");
return 0;

The result is the same, but that’'s how MOV at that line looks like now:

Listing 1.30: Non-optimizing GCC 4.8.1 + objdump

4005a4: d2800000 mov X0, #0x0 // #0

LDP (Load Pair) then restores the X29 and X30 registers.

There is no exclamation mark after the instruction: this implies that the values are first loaded from the
stack, and only then is SP increased by 16. This is called post-index.

A new instruction appeared in ARM64: RET. It works just as BX LR, only a special hint bit is added,
informing the CPU that this is a return from a function, not just another jump instruction, so it can execute
it more optimally.

Due to the simplicity of the function, optimizing GCC generates the very same code.

1.5.5 MIPS
A word about the “global pointer”

One important MIPS concept is the “global pointer”. As we may already know, each MIPS instruction has
a size of 32 bits, so it's impossible to embed a 32-bit address into one instruction: a pair has to be used
for this (like GCC did in our example for the text string address loading). It's possible, however, to load
data from the address in the range of register — 32768...register + 32767 using one single instruction (because
16 bits of signed offset could be encoded in a single instruction). So we can allocate some register for
this purpose and also allocate a 64KiB area of most used data. This allocated register is called a “global
pointer” and it points to the middle of the 64KiB area. This area usually contains global variables and
addresses of imported functions like printf() , because the GCC developers decided that getting the
address of some function must be as fast as a single instruction execution instead of two. In an ELF file
this 64KiB area is located partly in sections .sbss (“small BSS**”) for uninitialized data and .sdata (“small
data”) for initialized data. This implies that the programmer may choose what data he/she wants to
be accessed fast and place it into .sdata/.sbss. Some old-school programmers may recall the MS-DOS

44Block Started by Symbol

25

oNOOULE, WN

1.5. HELLO, WORLD!

memory model 10.6 on page 990 or the MS-DOS memory managers like XMS/EMS where all memory was
divided in 64KiB blocks.

This concept is not unique to MIPS. At least PowerPC uses this technique as well.

Optimizing GCC

Lets consider the following example, which illustrates the “global pointer” concept.

Listing 1.31: Optimizing GCC 4.4.5 (assembly output)

$LCO:
; \000 is zero byte in octal base:
.ascii "Hello, world!\012\000"

main:
; function prologue.
; set the GP:

lui $28,%hi(gnu local gp)

addiu $sp, $sp, -32

addiu $28,$28,%lo(__gnu _local gp)
; save the RA to the local stack:

sw $31,28($sp)
; load the address of the puts() function from the GP to $25:
lw $25,%callle (puts) ($28)
; load the address of the text string to $4 ($a0):
lui $4,%hi($LCO)
; jump to puts(), saving the return address in the 1link register:
jalr $25

addiu $4,%$4,%10($LCO) ; branch delay slot
; restore the RA:
w $31,28($sp)
; copy O from $zero to $vO:
move $2,%$0
; return by jumping to the RA:
j $31
; function epilogue:
addiu $sp,$sp,32 ; branch delay slot + free local stack

As we see, the $GP register is set in the function prologue to point to the middle of this area. The RA
register is also saved in the local stack. puts() is also used here instead of printf() . The address of

the puts() function isloaded into $25 using LW the instruction (“Load Word”). Then the address of the

text string is loaded to $4 using LUI (“Load Upper Immediate”) and ADDIU (“Add Immediate Unsigned
Word”) instruction pair. LUI sets the high 16 bits of the register (hence “upper” word in instruction name)
and ADDIU adds the lower 16 bits of the address.

ADDIU follows JALR (haven’'t you forgot branch delay slots yet?). The register $4 is also called $AO0,
which is used for passing the first function argument 4°.

JALR (“Jump and Link Register”) jumps to the address stored in the $25 register (address of puts())
while saving the address of the next instruction (LW) in RA. This is very similar to ARM. Oh, and one
important thing is that the address saved in RA is not the address of the next instruction (because it’s in
a delay slot and is executed before the jump instruction), but the address of the instruction after the next
one (after the delay slot). Hence, PC + 8 is written to RA during the execution of JALR, in our case, this

is the address of the LW instruction next to ADDIU .

LW (“Load Word”) at line 20 restores RA from the local stack (this instruction is actually part of the function
epilogue).

MOVE at line 22 copies the value from the $0 ($ZERO) register to $2 ($VO0).

MIPS has a constant register, which always holds zero. Apparently, the MIPS developers came up with
the idea that zero is in fact the busiest constant in the computer programming, so let’s just use the $0
register every time zero is needed.

45The MIPS registers table is available in appendix .3.1 on page 1023

26

1.5. HELLO, WORLD!

Another interesting fact is that MIPS lacks an instruction that transfers data between registers. In fact,
MOVE DST, SRC is ADD DST, SRC, $ZERO (DST = SRC +0), which does the same. Apparently, the MIPS
developers wanted to have a compact opcode table. This does not mean an actual addition happens at

each MOVE instruction. Most likely, the CPU optimizes these pseudo instructions and the ALU%® is never
used.

J atline 24 jumps to the address in RA, which is effectively performing a return from the function. ADDIU

after J is in fact executed before J (remember branch delay slots?) and is part of the function epilogue.
Here is also a listing generated by IDA. Each register here has its own pseudo name:

Listing 1.32: Optimizing GCC 4.4.5 (IDA)

LCo~NOOULLA, WN B

.text:00000000 main:
.text: 00000000

.text:00000000 var 10 = -0x10

.text:00000000 var 4 = -4

.text: 00000000

; function prologue.

; set the GP:

.text:00000000 lui $gp, (__gnu_local gp >> 16)
.text:00000004 addiu $sp, -0x20

.text: 00000008 la $gp, (__gnu_local gp & OXFFFF)
; save the RA to the local stack:

.text:0000000C sw $ra, 0x20+var _4($sp)

; save the GP to the local stack:
; for some reason, this instruction is missing in the GCC assembly output:

.text:00000010 sw $gp, Ox20+var 10($sp)

; Lload the address of the puts() function from the GP to $t9:
.text:00000014 lw $t9, (puts & OXFFFF) ($gp)

; form the address of the text string in $a0:

.text:00000018 lui $a0, ($LCO >> 16) # "Hello, world!'"
; jump to puts(), saving the return address in the link register:
.text:0000001C jalr $t9

.text:00000020 la $a0, ($LCO & OXFFFF) # "Hello, world!"
; restore the RA:

.text:00000024 lw $ra, 0x20+var _4($sp)

; copy O from $zero to $vO:

.text:00000028 move $v0, $zero

; return by jumping to the RA:

.text:0000002C jr $ra

; function epilogue:

.text:00000030 addiu $sp, 0x20

The instruction at line 15 saves the GP value into the local stack, and this instruction is missing mysteri-
ously from the GCC output listing, maybe by a GCC error #’. The GP value has to be saved indeed, because

each function can use its own 64KiB data window. The register containing the puts() address is called
$T9, because registers prefixed with T- are called “temporaries” and their contents may not be preserved.

Non-optimizing GCC

Non-optimizing GCC is more verbose.

Listing 1.33: Non-optimizing GCC 4.4.5 (assembly output)

RoOoOwoo~NOOULE WN -

==

$LCO:
.ascii "Hello, world!\012\000"
main:
; function prologue.
; save the RA ($31) and FP in the stack:
addiu $sp, $sp, -32
sw $31,28($sp)
sw $fp,24($sp)
; set the FP (stack frame pointer):
move $fp, $sp
; set the GP:

46 Arithmetic logic unit
47 Apparently, functions generating listings are not so critical to GCC users, so some unfixed errors may still exist.

27

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39

LCo~NOOULLA, WN

1.5. HELLO, WORLD!

lui $28,%hi(gnu local gp)
addiu $28,%$28,%lo(__gnu_local gp)
; load the address of the text string:
lui $2,%hi($LCO)
addiu $4,%2,%1l0($LCO)
; load the address of puts() using the GP:
w $2,%calll6 (puts) ($28)
nop
; call puts():
move $25,$2
jalr $25
nop ; branch delay slot

; restore the GP from the local stack:
w $28,16($fp)

; set register $2 ($V0) to zero:
move $2,%$0

; function epilogue.

; restore the SP:
move $sp,$fp

; restore the RA:

w $31,28(%$sp)
; restore the FP:
w $fp,24($sp)

addiu $sp, $sp,32
; jump to the RA:
j $31
nop ; branch delay slot

We see here that register FP is used as a pointer to the stack frame. We also see 3 NOPs. The second
and third of which follow the branch instructions. Perhaps the GCC compiler always adds NOPs (because
of branch delay slots) after branch instructions and then, if optimization is turned on, maybe eliminates
them. So in this case they are left here.

Here is also IDA listing:
Listing 1.34: Non-optimizing GCC 4.4.5 (IDA)

.text:00000000 main:
.text: 00000000

.text: 00000000 var 10 = -0x10

.text:00000000 var 8 = -8

.text:00000000 var 4 = -4

.text:00000000

; function prologue.

; save the RA and FP in the stack:

.text:00000000 addiu $sp, -0x20
.text:00000004 sw $ra, 0x20+var 4($sp)
.text:00000008 sw $fp, 0x20+var 8($sp)
; set the FP (stack frame pointer):

.text:0000000C move $fp, $sp

; set the GP:

.text:00000010 la $gp, _ gnu local gp
.text:00000018 sw $gp, 0x20+var 10($sp)
; load the address of the text string:

.text:0000001C lui $v0, (aHelloWorld >> 16) # "Hello, world!"
.text:00000020 addiu $a0, $vO, (aHelloWorld & OXFFFF) # "Hello, world!"
; load the address of puts() using the GP:

.text:00000024 lw $v0, (puts & OXFFFF) ($gp)
.text:00000028 or $at, $zero ; NOP

; call puts():

.text:0000002C move $t9, $vO
.text:00000030 jalr $t9

.text:00000034 or $at, $zero ; NOP

; restore the GP from local stack:

.text:00000038 1w $gp, 0x20+var 10($fp)
; set register $2 ($V0) to zero:

.text:0000003C move $v0, $zero

; function epilogue.

; restore the SP:

.text:00000040 move $sp, $fp

28

34
35
36
37
38
39
40
41

1.5. HELLO, WORLD!
; restore the RA:

.text:00000044 lw $ra, 0x20+var 4($sp)
; restore the FP:

.text:00000048 w $fp, 0x20+var 8($sp)
.text:0000004C addiu $sp, 0x20

; jump to the RA:

.text: 00000050 jr $ra

.text:00000054 or $at, $zero ; NOP

Interestingly, IDA recognized the LUI /ADDIU instructions pair and coalesced them into one LA (“Load
Address”) pseudo instruction at line 15. We may also see that this pseudo instruction has a size of 8 bytes!
This is a pseudo instruction (or macro) because it's not a real MIPS instruction, but rather a handy name
for an instruction pair.

Another thing is that IDA doesn’t recognize NOP instructions, so here they are at lines 22, 26 and 41. Itis
OR $AT, $ZERO . Essentially, this instruction applies the OR operation to the contents of the $AT register

with zero, which is, of course, an idle instruction. MIPS, like many other ISAs, doesn’t have a separate
NOP instruction.

Role of the stack frame in this example
The address of the text string is passed in the register. Why setup a local stack anyway? The reason
for this lies in the fact that the values of registers RA and GP have to be saved somewhere (because

printf() is called), and the local stack is used for this purpose. If this was a leaf function, it would have
been possible to get rid of the function prologue and epilogue, for example: 1.4.3 on page 8.

Optimizing GCC: load it into GDB

Listing 1.35: sample GDB session

root@debian-mips:~# gcc hw.c -03 -0 hw
root@debian-mips:~# gdb hw
GNU gdb (GDB) 7.0.1-debian

Reading symbols from /root/hw...(no debugging symbols found)...done.
(gdb) b main

Breakpoint 1 at 0x400654

(gdb) run

Starting program: /root/hw

Breakpoint 1, 0x00400654 in main ()

(gdb) set step-mode on

(gdb) disas

Dump of assembler code for function main:

0x00400640 <main+0>: lui gp,0x42
0x00400644 <main+4>: addiu sp,sp,-32
0x00400648 <main+8>: addiu gp,gp,-30624
0x0040064c <main+12>: Sw ra,28(sp)
0x00400650 <main+16>: sw gp,16(sp)
Ox00400654 <main+20>: lw t9,-32716(gp)
0x00400658 <main+24>: lui a0, 0x40

0x0040065c <main+28>: jalr t9
Ox00400660 <main+32>: addiu a0,a0,2080

0x00400664 <main+36>: lw ra,28(sp)
0x00400668 <main+40>: move v0O, zero
0x0040066Cc <main+44>: jr ra

0x00400670 <main+48>: addiu sp,sp,32
End of assembler dump.

(gdb) s

0x00400658 in main ()

(gdb) s

0x0040065c in main ()

(gdb) s

0x2ab2de60 in printf () from /lib/libc.so0.6
(gdb) x/s $a0

29

1.6. FUNCTION PROLOGUE AND EPILOGUE

0x400820: "hello, world"
(gdb)

1.5.6 Conclusion

The main difference between x86/ARM and x64/ARM64 code is that the pointer to the string is now 64-bits
in length. Indeed, modern CPUs are now 64-bit due to both the reduced cost of memory and the greater
demand for it by modern applications. We can add much more memory to our computers than 32-bit
pointers are able to address. As such, all pointers are now 64-bit.

1.5.7 Exercises

* http://challenges.re/48
* http://challenges.re/49

1.6 Function prologue and epilogue

A function prologue is a sequence of instructions at the start of a function. It often looks something like
the following code fragment:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: save the value in the EBP register, set the value of the EBP register to the
value of the ESP and then allocate space on the stack for local variables.

The value in the EBP stays the same over the period of the function execution and is to be used for local

variables and arguments access. For the same purpose one can use ESP, but since it changes over time
this approach is not too convenient.

The function epilogue frees the allocated space in the stack, returns the value in the EBP register back
to its initial state and returns the control flow to the caller:

mov esp, ebp
pop ebp
ret 0

Function prologues and epilogues are usually detected in disassemblers for function delimitation.

1.6.1 Recursion

Epilogues and prologues can negatively affect the recursion performance.

More about recursion in this book: 3.4.3 on page 480.

1.7 Stack

The stack is one of the most fundamental data structures in computer science 8. AKA*? LIFO>°,

Technically, it is just a block of memory in process memory along with the ESP or RSP register in x86 or
x64, or the SP register in ARM, as a pointer within that block.

48wikipedia.org/wiki/Call_stack
49 Also Known As
50| ast In First Out

30

http://challenges.re/48
http://challenges.re/49
http://go.yurichev.com/17119

1.7. STACK

The most frequently used stack access instructions are PUSH and POP (in both x86 and ARM Thumb-
mode). PUSH subtracts from ESP /RSP /SP 4 in 32-bit mode (or 8 in 64-bit mode) and then writes the
contents of its sole operand to the memory address pointed by ESP / RSP /SP.

POP is the reverse operation: retrieve the data from the memory location that SP points to, load it into
the instruction operand (often a register) and then add 4 (or 8) to the stack pointer.

After stack allocation, the stack pointer points at the bottom of the stack. PUSH decreases the stack

pointer and POP increases it. The bottom of the stack is actually at the beginning of the memory allocated
for the stack block. It seems strange, but that's the way it is.

ARM supports both descending and ascending stacks.

For example the STMFD/LDMFD, STMED>!/LDMED>? instructions are intended to deal with a descending
stack (grows downwards, starting with a high address and progressing to a lower one). The STMFA>3/LDMFA>4,
STMEA>>/LDMEA®® instructions are intended to deal with an ascending stack (grows upwards, starting from

a low address and progressing to a higher one).

1.7.1 Why does the stack grow backwards?

Intuitively, we might think that the stack grows upwards, i.e. towards higher addresses, like any other
data structure.

The reason that the stack grows backward is probably historical. When the computers were big and
occupied a whole room, it was easy to divide memory into two parts, one for the heap and one for the
stack. Of course, it was unknown how big the heap and the stack would be during program execution, so
this solution was the simplest possible.

Start of heap Start of stack

Heap — «— Stack

In [D. M. Ritchie and K. Thompson, The UNIX Time Sharing System, (1974)]°’we can read:

The user-core part of an image is divided into three logical segments. The program text
segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same
program. At the first 8K byte boundary above the program text segment in the virtual ad-
dress space begins a nonshared, writable data segment, the size of which may be extended
by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the hardware’s stack pointer fluctuates.

This reminds us how some students write two lecture notes using only one notebook: notes for the first
lecture are written as usual, and notes for the second one are written from the end of notebook, by flipping
it. Notes may meet each other somewhere in between, in case of lack of free space.

1.7.2 What is the stack used for?
Save the function’s return address

x86

51Store Multiple Empty Descending (ARM instruction)
52 oad Multiple Empty Descending (ARM instruction)
53Store Multiple Full Ascending (ARM instruction)
54Load Multiple Full Ascending (ARM instruction)
55Store Multiple Empty Ascending (ARM instruction)
56| pad Multiple Empty Ascending (ARM instruction)
57Also available as http://go.yurichev.com/17270

31

http://go.yurichev.com/17270

1.7. STACK
When calling another function with a CALL instruction, the address of the point exactly after the CALL

instruction is saved to the stack and then an unconditional jump to the address in the CALL operand is
executed.

The CALL instruction is equivalent to a
PUSH address after call / JMP operand instruction pair.

RET fetches a value from the stack and jumps to it —that is equivalenttoa POP tmp / JMP tmp instruc-
tion pair.

Overflowing the stack is straightforward. Just run eternal recursion:

void f()
{

I

()

MSVC 2008 reports the problem:

c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

ss.cpp
c:\tmpb\ss.cpp(4) : warning C4717: 'f' : recursive on all control paths, function will cause v
& runtime stack overflow

...but generates the right code anyway:

?f@AYAXXZ PROC HE i
; File c:\tmp6\ss.cpp
; Line 2

push ebp

mov ebp, esp
; Line 3

call ?fE@QYAXXZ HE i
; Line 4

pop ebp

ret 0
?f@QYAXXZ ENDP HE

...Also if we turn on the compiler optimization (/0x option) the optimized code will not overflow the
stack and will work correctly®® instead:

?f@AYAXXZ PROC HE
; File c:\tmpb6\ss.cpp
; Line 2
$LL3@f:
; Line 3

jmp SHORT $LL3@f
?f@Q@YAXXZ ENDP ; f

GCC 4.4.1 generates similar code in both cases without, however, issuing any warning about the problem.

ARM

ARM programs also use the stack for saving return addresses, but differently. As mentioned in “Hello,
world!” (1.5.4 on page 19), the RA is saved to the LR (link register). If one needs, however, to call another
function and use the LR register one more time, its value has to be saved. Usually it is saved in the
function prologue.

Often, we see instructions like PUSH R4-R7,LR along with this instruction in epilogue POP R4-R7,PC —
thus register values to be used in the function are saved in the stack, including LR.

58jrony here

32

1.7. STACK

Nevertheless, if a function never calls any other function, in RISC terminology it is called a leaf function®®.
As a consequence, leaf functions do not save the LR register (because they don’t modify it). If such
function is small and uses a small number of registers, it may not use the stack at all. Thus, it is possible
to call leaf functions without using the stack, which can be faster than on older x86 machines because
external RAM is not used for the stack ©°. This can be also useful for situations when memory for the stack
is not yet allocated or not available.

Some examples of leaf functions: 1.10.3 on page 104, 1.10.3 on page 104, 1.277 on page 315, 1.293 on
page 334, 1.22.5 on page 334, 1.185 on page 210, 1.183 on page 208, 1.202 on page 226.

Passing function arguments

The most popular way to pass parameters in x86 is called “cdecl”:

push arg3

push arg2

push argl

call f

add esp, 12 ; 4*3=12

Callee functions get their arguments via the stack pointer.

Therefore, this is how the argument values are located in the stack before the execution of the f()
function’s very first instruction:

ESP return address

ESP+4 argument#1, marked in IDA as arg 0
ESP+8 argument#2, marked in IDA as arg 4
ESP+0xC | argument#3, marked in IDA as arg 8

For more information on other calling conventions see also section (6.1 on page 732).

By the way, the callee function does not have any information about how many arguments were passed.
C functions with a variable number of arguments (like printf()) determine their number using format
string specifiers (which begin with the % symbol).

If we write something like:

printf("sd %d %d", 1234);

printf() will print 1234, and then two random numbers®!, which were lying next to it in the stack.

That's why it is not very important how we declare the main() function: as main() ,
main(int argc, char *argv[]) or main(int argc, char *argv[], char *envp[]) .

In fact, the CRT-code is calling main() roughly as:

push envp
push argv
push argc
call main

If you declare main() as main() without arguments, they are, nevertheless, still present in the stack,
but are not used. If you declare main() as main(int argc, char *argv[]) , you will be able to use
first two arguments, and the third will remain “invisible” for your function. Even more, it is possible to
declare main(int argc) , and it will work.

59 nfocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/kal13785.html

60Some time ago, on PDP-11 and VAX, the CALL instruction (calling other functions) was expensive; up to 50% of execution time
might be spent on it, so it was considered that having a big number of small functions is an anti-pattern [Eric S. Raymond, The Art
of UNIX Programming, (2003)Chapter 4, Part II].

61Not random in strict sense, but rather unpredictable: 1.7.4 on page 38

33

http://go.yurichev.com/17064

1.7. STACK
Alternative ways of passing arguments

It is worth noting that nothing obliges programmers to pass arguments through the stack. It is not a
requirement. One could implement any other method without using the stack at all.

A somewhat popular way among assembly language newbies is to pass arguments via global variables,
like:

Listing 1.36: Assembly code

mov X, 123

mov Y, 456

call do something
X dd ?
Y dd ?
do_something proc near

; take X

; take Y

; do something

retn

do _something endp

But this method has obvious drawback: do_something() function cannot call itself recursively (or via
another function), because it has to zap its own arguments. The same story with local variables: if you
hold them in global variables, the function couldn’t call itself. And this is also not thread-safe %2. A
method to store such information in stack makes this easier—it can hold as many function arguments
and/or values, as much space it has.

[Donald E. Knuth, The Art of Computer Programming, Volume 1, 3rd ed., (1997), 189] mentions even
weirder schemes particularly convenient on IBM System/360.

MS-DOS had a way of passing all function arguments via registers, for example, this is piece of code for
ancient 16-bit MS-DOS prints “Hello, world!”:

mov dx, msg ; address of message

mov ah, 9 ; 9 means "print string" function
int 21h ; DOS "syscall"

mov ah, 4ch ; "terminate program" function
int 21h ; DOS "syscall"

msg db 'Hello, World!\$'

This is quite similar to 6.1.3 on page 733 method. And also it's very similar to calling syscalls in Linux
(6.3.1 on page 746) and Windows.

If a MS-DOS function is going to return a boolean value (i.e., single bit, usually indicating error state), CF
flag was often used.

For example:

mov ah, 3ch ; create file
lea dx, filename

mov cl, 1

int 21h

jc error

mov file handle, ax

error:

In case of error, CF flag is raised. Otherwise, handle of newly created file is returned via AX.

62Correctly implemented, each thread would have its own stack with its own arguments/variables.

34

1.7. STACK

This method is still used by assembly language programmers. In Windows Research Kernel source code
(which is quite similar to Windows 2003) we can find something like this (file base/ntos/ke/i386/cpu.asm):

public Get386Stepping
Get386Stepping proc

call MultiplyTest ; Perform multiplication test
jnc short G3s00 ; if nc, muttest is ok
mov ax, 0
ret
G3s00:
call Check386B0 ; Check for BO stepping
jnc short G3s05 ; if nc, it's Bl/later
mov ax, 100h ; It is BO/earlier stepping
ret
G3s05:
call Check386D1 ; Check for D1 stepping
jc short G3s10 ; if ¢, it is NOT D1
mov ax, 301h ; It is D1/later stepping
ret
G3s10:
mov ax, 101h ; assume it is Bl stepping
ret

MultiplyTest proc

xor CX, CX ; 64K times is a nice round number
mltOO: push CcX
call Multiply ; does this chip's multiply work?
pop CcX
jc short mltx ; if c, No, exit
loop mltoo ; 1f nc, YEs, loop to try again
clc
mltx:
ret

MultiplyTest endp

Local variable storage

A function could allocate space in the stack for its local variables just by decreasing the stack pointer
towards the stack bottom.

Hence, it's very fast, no matter how many local variables are defined. It is also not a requirement to store
local variables in the stack. You could store local variables wherever you like, but traditionally this is how
it's done.

x86: alloca() function

It is worth noting the alloca() function 3. This function works like malloc() , but allocates memory
directly on the stack. The allocated memory chunk does not have to be freed via a free() function call,
since the function epilogue (1.6 on page 30) returns ESP back to its initial state and the allocated memory
is just dropped. It is worth noting how alloca() isimplemented. In simple terms, this function just shifts

ESP downwards toward the stack bottom by the number of bytes you need and sets ESP as a pointer to
the allocated block.

Let’s try:

63|n MSVC, the function implementation can be found in allocal6.asm and chkstk.asm in
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\crt\src\intel

35

1.7. STACK

#ifdef GNUC

#include <alloca.h> // GCC
#else

#include <malloc.h> // MSVC
#endif

#include <stdio.h>

void f()

{

char *buf=(char*)alloca (600);
#ifdef _ GNUC

snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // GCC
#else

_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // MSVC
#endif

puts (buf);
I

_snprintf() function works just like printf() , but instead of dumping the result into stdout (e.g., to
terminal or console), it writes it to the buf buffer. Function puts() copies the contents of buf to stdout.

Of course, these two function calls might be replaced by one printf() call, but we have toillustrate small
buffer usage.

MSVC

Let’s compile (MSVC 2010):
Listing 1.37: MSVC 2010

mov eax, 600 ; 00000258H

call _ alloca probe 16
mov esi, esp

push 3

push 2

push 1

push OFFSET $5G2672
push 600 ; 00000258H
push esi

call snprintf

push esi

call puts

add esp, 28

The sole alloca() argument is passed via EAX (instead of pushing it into the stack) 64,

GCC + Intel syntax

GCC 4.4.1 does the same without calling external functions:

Listing 1.38: GCC 4.7.3

.LCO:

641t is because alloca() is rather a compiler intrinsic (10.3 on page 986) than a normal function. One of the reasons we need a
separate function instead of just a couple of instructions in the code, is because the MSVC®3 alloca() implementation also has code

which reads from the memory just allocated, in order to let the OS map physical memory to this VM®6 region. After the alloca()

call, ESP points to the block of 600 bytes and we can use it as memory for the buf array.

36

1.7. STACK
.string "hi! %d, %d, %d\n"

f:
push ebp
mov ebp, esp
push ebx
sub esp, 660
lea ebx, [esp+39]
and ebx, -16 ; align pointer by 16-bit border
mov DWORD PTR [esp], ebx ;S
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LCO ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600 ; maxlen
call _snprintf
mov DWORD PTR [esp], ebx ;S
call puts
mov ebx, DWORD PTR [ebp-4]
leave
ret

GCC + AT&T syntax

Let’s see the same code, but in AT&T syntax:

Listing 1.39: GCC 4.7.3

.LCO:
.string "hi! %d, %d, %d\n"

pushl %ebp

movl %esp, %ebp
pushl %ebx

subl $660, %esp
leal 39(%esp), %ebx

andl $-16, %ebx
movl %ebx, (%esp)
movl $3, 20(%esp)
movl $2, 16(%esp)
mov'l $1, 12(%esp)
movl $.LCO, 8(%esp)
movl $600, 4(%esp)
call _snprintf
movl %ebx, (%esp)
call puts

movl -4(%ebp), %ebx
leave

ret

The code is the same as in the previous listing.

By the way, movl $3, 20(%esp) corresponds to mov DWORD PTR [esp+20], 3 in Intel-syntax. In the
AT&T syntax, the register+offset format of addressing memory looks like offset(%register) .

(Windows) SEH

SEH®’ records are also stored on the stack (if they are present). Read more about it: (6.5.3 on page 762).

Buffer overflow protection

More about it here (1.20.2 on page 275).

67Structured Exception Handling

37

1.7. STACK
Automatic deallocation of data in stack

Perhaps the reason for storing local variables and SEH records in the stack is that they are freed automat-
ically upon function exit, using just one instruction to correct the stack pointer (it is often ADD). Function
arguments, as we could say, are also deallocated automatically at the end of function. In contrast, every-
thing stored in the heap must be deallocated explicitly.

1.7.3 A typical stack layout

Atypical stack layoutin a 32-bit environment at the start of a function, before the first instruction execution
looks like this:

ESP-OxC | local variable#2, marked in IDA as var 8

ESP-8 local variable#1, marked in IDA as var_4
ESP-4 saved value of EBP
ESP Return Address

ESP+4 argument#1, marked in IDA as arg 0
ESP+8 argument#2, marked in IDA as arg 4
ESP+0xC | argument#3, marked in IDA as arg 8

1.7.4 Noise in stack

When one says that something seems
random, what one usually means in practice
is that one cannot see any regularities in it.

Stephen Wolfram, A New Kind of Science.

Often in this book “noise” or “garbage” values in the stack or memory are mentioned. Where do they
come from? These are what has been left there after other functions’ executions. Short example:

#include <stdio.h>

void f1()
{
int a=1, b=2, c=3;
i
void f2()
{
int a, b, c;
printf ("%d, %d, %d\n", a, b, c);
i
int main()
{
f1();
2();
i
Compiling ...

Listing 1.40: Non-optimizing MSVC 2010
$5G2752 DB '%d, %d, %d', OaH, OOH
c$ = -12 ; size = 4
_b$ = -8 ; size = 4
_a$ = -4 ; size = 4
_fl PROC

push ebp
mov ebp, esp

38

1.7. STACK

sub esp, 12
mov DWORD PTR _a$[ebp], 1
mov DWORD PTR b$[ebp], 2
mov DWORD PTR c$[ebp], 3
mov esp, ebp
pop ebp
ret 0
_fl ENDP
c$ = -12 ; size = 4
_b$ = -8 ; size = 4
~a$ = -4 ; size = 4
_f2 PROC
push ebp
mov ebp, esp
sub esp, 12
mov eax, DWORD PTR c$[ebp]
push eax
mov ecx, DWORD PTR b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebpl
push edx
push OFFSET $SG2752 ; '%d, %d, %d'
call DWORD PTR imp printf
add esp, 16
mov esp, ebp
pop ebp
ret 0
_f2 ENDP
_main PROC
push ebp
mov ebp, esp
call _f1
call _f2
xor eax, eax
pop ebp
ret 0
~main ENDP

The compiler will grumble a little bit...

c:\Polygon\c>cl st.c /Fast.asm /MD
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

st.c

c:\polygon\c\st.c(11l) : warning C4700: uninitialized local variable 'c' used
c:\polygon\c\st.c(11l) : warning C4700: uninitialized local variable 'b' used
c:\polygon\c\st.c(11l) : warning C4700: uninitialized local variable 'a' used
Microsoft (R) Incremental Linker Version 10.00.40219.01

Copyright (C) Microsoft Corporation. All rights reserved.

/out:st.exe
st.obj

But when we run the compiled program ...

c:\Polygon\c>st
1, 2,3

Oh, what a weird thing! We did not set any variables in f2() . These are “ghosts” values, which are still
in the stack.

39

1.7. STACK
Let’s load the example into OllyDbg:

OllyDbg - st.exe

Eile Wiew Debug Trace FElugins QOptions Windows Help
Bl x| »| >0 w4 Y] L E|M|w|T|c|R||K| B|M]H]
-loix

ENEERIE I T FUSH_EEF -
gizcionl ||+ eEEC MOY EBF, ESP 4 fReaisters PP =
81201603 B SUE ESF, BC ECX 20063651
81201606 FC @1@@f MOU OWORD FTR SS:[LOCAL.11,1 e RSNl e
8121660 FS G268 DWORD FTR SS:[LOCAL.21,2 CRY CerEnmn
@120 F4 G360 DWORD FTR SS:[LOCAL.21,3 Cob hoiFEaen
2las : S EEF BE1FFE64
aleste ES] BERBEEEE
gloioiE ED] BERBEHEE |
B1ZC1E28 s EIF B12C181E =t.B12C101E
elzcigzl|] - MO EEF, ESP :

' C @ ES BB2E 32bit B(FFFFFFFF)
BlzciEzz | . SUE ESF, 8L F @ C5 @823 32bit @(FFFFFFFF)
BlzCigze|] » MOU ER, DWORD FTR SS: [LOCAL. 2] h i S% opeB 3obit BIFFEFFEFF)
@12C1823] - PUSH_EH: ~lz @ 05 enZE ZZhit @IFFFFFFFF)
BlzcigzA|] . MOL_ECH DWORD FTR_SS: [LOCAL. 2] S B F: 0BEs Sobit TEFDPEPG!FFF)
EBF=0B1FF 6d T B G5 BEZE 32bit BIFFFFFFFF)
ESP=B51FFEES e l

08 LastErr BOABEEEE ERROR_SUCCESS
v | EFL ©@@E8212 (HO,MNE,ME,A, NS, PO, GE, &) [w

Address [Hex dump ASC] E FFEFFFFE] ™ |
G1-CERDn| 25 64 -0 o8| 25 64 2L =8| 25 &4 OO OO 61 B0 00 60| Ed, : i ES-@ RETURMN from St, 0120 —
G12CEE1G| 06 CB 2C &1|60 86 G0 86|00 CB 2C 01| A1 61 66 06| 7,6 I eeonmoaz ke

G12CER20| 00 00 GO 09 09 B0 B G668 10 00 00| 00 68 68 60 oairrazall eoseaoniln

b1CBod0| 01 b o bb| ob b ob bb| b b o Da|ba Db 0b OB 6 et | i

BIZCERCA| R B0 BP9 6B GE OR PO G0 6P B 00 PO B2 GF B 00 e et loes _”f.!:,ﬁ RETURM from st.@12C |
B1ZCEPED| 02 G 0GR B9 00 DR G B8 0D D0 DO G698 PO 00 0| @ onirreza|La1sc1 65| ke B| RETURN .10
B1ZCER7E|0R OR OB B9 B9 B0 OB G698 D 00 00| @3 68 B8 G0 aRlErETa| cpleelns| B TEM St
B1ZCERSH| DR BR GR B9 B9 B0 BR G6|BF PR B0 BE| B3 68 BB G0 bl gt ey L it

Figure 1.5: OllyDbg: f1()

When f1() assigns the variables a, b and ¢, their values are stored at the address 0x1FF860 and so on.

40

1.7. STACK
And when f2() executes:

OllyDbg - st.exe

File WVew Debug Trace FElugins Options Windows Help

B x| »| >0 i+ 4 W] L]E|m|wT|c|R||K| B|M| H]

[8 cPU - main thread, module st -0 x|

- GOEC GO SUE ESF, G -

- BE4E F4 MOY ERX,DWORD PTR S5: [LOCAL. 21 & jEeaisters (PP =
B12C1 5@ FUSH_EA% ERY anEanng
B12C1 8B40 F3 MOU ECH, DWORD TR S5: [LOCAL. 21 — o5 e
B15C1 &1 PUSH ECH e
B12C1 SBSS FC MOl EDH, DWORD TR $5: [LOCAL. 1] Eoh LGiFFaea
B12C1 . &2 FUSH ED% EoP OBiFFacd
B12C1 . &5 PEEAZCEY |PUSH OFFSET @12CES0E O A
B12C1 . ES 25BBPo0E |CALL B12C1Bei EAl honnonon
B12C1 5304 10 ADD ESF, i@ |
B12C1 MOU ESP,EBP EIP B12C1826 =t.B12C1826
aige C 8 ES B82E S2bit @(FFFFFFFF)
gletiges £ RETH F @ CS G823 22bit @(FFFFFFFF)
gletiges £t e A1 S5 @A2E 22bit @(FFFFFFFF)
gletigas £t e [z @ 05 eaze 22bit GIFFFFFFFE)
Stack [GAIFFESET= T8 G pon S2bir GLFFFRERFE)
EAX=BRACZE5E = R :

08 LaztErr BEARGERE ERROR_SUCCESS
v | EFL @@meez1z (MO,ME,NE, A, NS, FO,GE, G |

Address | Hex dump ASC] w EIEIIFFEEI H-H-I-I: n a
G12CEO0AJEE 64 20 26|25 64 ZC 20| 25 64 OF 09 61 08 00 00| B, ——etesededashaki 15,0 RETURN focn st 8120
Bi5CEs0 08 B8 o5 5| o o b op o] G515 b8 oo oo - [eaifrest|[secuenz fe
O15Cbada| a1 on 6 on a8 ba 68 ba 69 oo o9 ba|da oA oo oa s e AR
BIZCEECH|0R OF OO 06| 0B OB GO G0 60 B0 00 DO| 02 0O 0O OO aalrress) talaclasD _f.!;,ﬂ RETURM from st.B12C_ |
B15CEPED| B2 0P BO GB| 0P DY BB DP| PO B2 DO DB| 0 0O 0D OO e [e Y e ke TURN ¢ -
G12CEE7E| G0 0P B9 99|88 G0 00 GO 00 0D 08 89|63 00 00 B0 BAiFFE 4| ropEnaaat| 6 ror =k
B15CEPSH| B0 DR 0O 0| 0P PE BE OE BE BR B0 DD B3 00 09 60 GalFFSr4| regoooaEl| g h

Figure 1.6: OllyDbg: f2()

. a,band cof f2() arelocated at the same addresses! No one has overwritten the values yet, so at that
point they are still untouched. So, for this weird situation to occur, several functions have to be called
one after another and SP has to be the same at each function entry (i.e., they have the same number of
arguments). Then the local variables will be located at the same positions in the stack. Summarizing, all
values in the stack (and memory cells in general) have values left there from previous function executions.
They are not random in the strict sense, but rather have unpredictable values. Is there another option?
It would probably be possible to clear portions of the stack before each function execution, but that’s too
much extra (and unnecessary) work.

MSVC 2013

The example was compiled by MSVC 2010. But the reader of this book made attempt to compile this
example in MSVC 2013, ran it, and got all 3 numbers reversed:

c:\Polygon\c>st
3, 2,1

Why? | also compiled this example in MSVC 2013 and saw this:
Listing 1.41: MSVC 2013

~a$ = -12 ; size = 4
_b$ = -8 ; size = 4
c$ = -4 ; size = 4
_f2 PROC
_f2 ENDP
c$ = -12 ; size = 4
_b$ = -8 ; size = 4
_a$ = -4 ; size = 4
_fl PROC

41

1.8. PRINTF() WITH SEVERAL ARGUMENTS

f1 ENDP

Unlike MSVC 2010, MSVC 2013 allocated a/b/c variables in function f2() in reverse order.And this is
completely correct, because C/C++ standards has no rule, in which order local variables must be allocated
in the local stack, if at all. The reason of difference is because MSVC 2010 has one way to do it, and MSVC
2013 has supposedly something changed inside of compiler guts, so it behaves slightly different.

1.7.5 Exercises

e http://challenges.re/51
* http://challenges.re/52

1.8 printf() with several arguments

Now let’'s extend the Hello, world! (1.5 on page 8) example, replacing printf() inthe main() function
body with this:

#include <stdio.h>

int main()

{
printf("a=%d; b=%d; c=%d", 1, 2, 3);
return 0;

i

1.8.1 x86

x86: 3 arguments

MSVC

When we compile it with MSVC 2010 Express we get:

$5G3830 DB 'a=%d; b=%d; c=%d', 0OH
push 3
push 2
push 1
push OFFSET $SG3830
call _printf
add esp, 16 ; 00000016H

Almost the same, but now we can see the printf() arguments are pushed onto the stack in reverse
order. The first argument is pushed last.

By the way, variables of int type in 32-bit environment have 32-bit width, that is 4 bytes.

So, we have 4 arguments here. 4 x4 = 16 —they occupy exactly 16 bytes in the stack: a 32-bit pointer to
a string and 3 numbers of type int.

When the stack pointer (ESP register) has changed back by the

ADD ESP, X instruction after a function call, often, the number of function arguments could be deduced
by simply dividing X by 4.

Of course, this is specific to the cdec/ calling convention, and only for 32-bit environment.

42

http://challenges.re/51
http://challenges.re/52

1.8. PRINTF() WITH SEVERAL ARGUMENTS
See also the calling conventions section (6.1 on page 732).

In certain cases where several functions return right after one another, the compiler could merge multiple
“ADD ESP, X” instructions into one, after the last call:

push al
push a2
call ...
push al
call ...
push al
push a2
push a3

call ...
add esp, 24

Here is a real-world example:

Listing 1.42: x86

.text:100113E7 push 3

.text:100113E9 call sub _100018B0 ; takes one argument (3)

.text:100113EE call sub 100019D0 ; takes no arguments at all
.text:100113F3 call sub_10006A90 ; takes no arguments at all
.text:100113F8 push 1

.text:100113FA call sub 100018B0 ; takes one argument (1)

.text:100113FF add esp, 8 ; drops two arguments from stack at once

43

1.8. PRINTF() WITH SEVERAL ARGUMENTS
MSVC and OllyDbg

Now let’s try to load this example in OllyDbg. It is one of the most popular user-land win32 debuggers.

We can compile our example in MSVC 2012 with /MD option, which means to link with MSVCR*.DLL , so
we can see the imported functions clearly in the debugger.

Then load the executable in OllyDbg. The very first breakpoint is in ntdll.dll, press F9 (run). The
second breakpoint is in CRT-code. Now we have to find the main() function.

Find this code by scrolling the code to the very top (MSVC allocates the main() function at the very
beginning of the code section):

thread, module 1 ;lglﬂ

PUSH EEP

Registers (FFPU) -

Bi1zFimaif] - Mou EBF, ESF e il
r SHIBZE34 MSUCR11E. __initenw
aizrieasz|] - PUSH 3 EC BESECELS

B1zF16eE|| - FUSH 2
B1zFiea7|| - FUSH 1 e
B1zF1663|| - GEZE2FAL |PUSH OFFSET @12F266e RSt | Eor Beoorane
B1ZF166E|| - CALL DWORD FTR DS:C<EMSUCR11@. printf] For BReaFaon
aizFiaid| - AOD ESF, 12, ES] BEEEBHE1
BizFie1s|| - FOF EEP EDL 88888855
aizriainlb. a3 RETH EIP B12F186@ 1.012F1660

B1ZF 116 HOU EF, SA4D -
B1ZFiG28 CHF WORD FTR DS: [<STRUCT IHAGE_DDS_HEAD LG ES BAZE 22hit BIFFEFFFEER)

L
m
2

F 1 CS @A23 32bit B(FFFFFFEF)
B12F 1554 E SHORT B12F 1020 R & SS o6ok Sohit OUFFFFFFFF)
B1ZF1aE P SHORT A12F]66] vyc L DS el scbit OLEFEEERRE)
2 5 8 FS GESS 3°hbit FEFOOSGE!FFF)

Eagggaégg§§g9381—l - E g G5 @828 22hit @(FFFFFFFFI
Local eall from 12F1217 08 LastErr BEAEEEEE ERROR_SUCCESS

= || EFL m@@@ez4e (MO, ME,E,EE,MS,FE,GE,LE1 [
Address |Hes dump ASCII [(AMSI o CE12F121C| #~8| RETURH from 1.81; o
G1ZFIG00[BL S0 25 4] 36 28 62 S| 2t 64 4B 2b| 63 30 26 64| Bond; bends of oaaradd| oecnares|Sar -
B1ZF3016| 66 BB B0 DB 61 B0 GO 60|00 GF GG 0D 0D GG B9 B0 & DREEFa4d| pasEarEE 14c
B12F2@28| FE FF FF FF|FF FF FF FF|22 5O 3C 48|00 AZ G2 EF|m g | BREEFR4T| BESECELS ML
B1ZF3Q50|PA B9 6O OB G0 BG GO G| 01 BB PR 08 B8 9F SE 6@ B DRZEFoAC| JoiEndsh)Za
B1ZF3R4B| 12 CE GF DB G0 6O BB 60|05 0D B OB B0 06 BB 96| 4 phZeraza| oooonand
B1ZF3ACH|BA G5 G0 DB GF B GO B0| 00 BB GO G5 6D GG BB B6 poZefazd| omoomasn .
B1ZF3REP| PG BB B0 DB G0 6O GO G0| 00 OB GO 0D 6D GG BB B0 DRZEFoED| fErpEmenl e —
i bl L o o
A1ZF3696| A6 A6 G666 66 GR GR 66|60 A0 A0 06 06 G666 6@ T B922F054) GROGAGEZ & | -

Figure 1.7: OllyDbg: the very start of the main() function

Click on the PUSH EBP instruction, press F2 (set breakpoint) and press F9 (run). We have to perform
these actions in order to skip CRT-code, because we aren’t really interested in it yet.

44

1.8. PRINTF() WITH SEVERAL ARGUMENTS
Press F8 (step over) 6 times, i.e. skip 6 instructions:

[E cPu - main thread, module 1 - 10| x|

B1ZFiEEE|rs 55 FUSH _EEF aflRegisters [FPLUI .

alzFimel|| - &BEC MOy EEF,ESP = — |
ErE | Do Mow FE Ef GHEEDEDd MSUCRLIE. initenw
ECH BEEECE 1S
. R Fhan 2 | 0 |EEEREEEE
EEH GRONBEGE

&2 pE2aeFE1 |PUSH CFFSET @12F3e0a ASC P
FF1E S926F@ CALL DWORD PTR DS: [<AMSUCR118. printf>] ECF BRsfzes FIR vo RSCID Masids beids o

S3C4 1@ AOD ESF, 18
' ESI BEEEGEEE1
S3CH “0R ERR,ERX EDI BEEAEEEE

=1u] FOF EBF
] FETH EIF B12F1686E 1.6812F1GEEE
B2 405HEEEE | MOU ERX,SR40

CHP WORD FTR OS:[<STRUCT IMAGE_DOZ_HEAD EOEE BEEE ZSpir BLERRREEERS
ErER] I fE L SHORT Bl=F182D A B S5 BEZE 22hit @(FFFFFFFF)
aizFiazel] . 24 JHF SHOBT @izFime] TP 1 DS BB=E SZbit BIFFFFEEFEF)
: S @ FS BESS Sebit EFDDRBGE!FFF)
[B12F2898]1=AAZEEDF4 (MSUCR11B8.printf] «lT & G5 682E 3Zbit BLFFFFFFFE)
e I
08 LastErr ORBOABEE ERROR_SUCCESS

= | EFL @ooaaz24s (MO, MNE,E,BE,MNS,PE,GE,LE) -

———
Address |Hex dump ASCIT [AMST = fAl2FseeE 608 RSCIT "azidr B=X o
G1ZFoOBO[BL S0 25 £4) 96 20 £2 0| 25 69 9F 20| 63 0 £C £4|Bond; brid; mefl Docor2ct || BEBaEoal) o -
BIZF2E16(00 OF BE GE) G @9 GF 00| B0 B0 GO O 08 0B DO GO & e | I
B12F3628| FE FF FF FF|FF FF FF FF|22 SO 2C 48|00 AZ C2 BF|w m1qr | PREEEEST | BEOERERS| Y. .
BIZF2636(06 0O PO GO GO 09 09 00|81 99 99 06|BS 9F SE 6O B e L BTEE 2T el reTURN £ 1. 81
G12FSe4e)| 12 CE SE GG| 68 OF 0D OB 08 GO0 GE ©9) 05 05 08 66| HFC AESSFa4n | ¢ REEREEE1 | B fom Le L
B1ZFSECA(G 03 BE GO GF GF 0P 00| 90 B0 PO OR| 08 03 0 69 i | I L
BISF2ECH(00 D BE GO GE BB G0 60|50 B0 0O 0|00 08 OO GO Bossraaa| | BaZEAE S| dat —
R R L L e
BloF2696| A6 A6 BE GO GE G0 G0 G0 GA BR BR 06| 0R BE 08 68)| 9922F 35| | Baaaaaad hd

Figure 1.8: OllyDbg: before printf() execution

Now the PC points to the CALL printf instruction. OllyDbg, like other debuggers, highlights the value

of the registers which were changed. So each time you press F8, EIP changes and its value is displayed
in red. ESP changes as well, because the arguments values are pushed into the stack.

Where are the values in the stack? Take a look at the right bottom debugger window:

BEZZF328(SH2EEESY| Awei| BETURM from MSUCEL1E. 6AZFFEAF) o
 —— st

_—
BEZZF223(Bl2F3800| B-8|ASCII "a=smd; b=rd; c=kd™
BEZZFIZC| BEEEEEE]
BEZZFI2E(BERREERZ
HEZ2F 3234 [BEEEEEES

BEZZFPEC|LBl2F1210
BEZZF348 [BEBBBBBI

#/8|RETURM from 1.012F1666 to 1.8
AL
rL

=

B022F244|| BESEIFES
GazEF243| | BASBCELS

-

5]
-]
L
-
L
5]
3

Figure 1.9: OllyDbg: stack after the argument values have been pushed (The red rectangular border was
added by the author in a graphics editor)

We can see 3 columns there: address in the stack, value in the stack and some additional OllyDbg com-
ments. OllyDbg understands printf () -like strings, so it reports the string here and the 3 values attached
to it.

It is possible to right-click on the format string, click on “Follow in dump”, and the format string will appear
in the debugger left-bottom window, which always displays some part of the memory. These memory
values can be edited. It is possible to change the format string, in which case the result of our example
would be different. It is not very useful in this particular case, but it could be good as an exercise so you
start building a feel of how everything works here.

45

1.8. PRINTF() WITH SEVERAL ARGUMENTS

Press F8 (step over).

We see the following output in the console:

a=1l; b=2; c=3

Let’s see how the registers and stack state have changed:

[E cPu - main thread, module 1

B1ZF 1866

[

BlZEle-E

FLUSH EEF
Moy EBF, ESF
PUSH =

PUSH =2

PUSH 1
FUSH OFFSET B1ZF3806

CALL DWORD FTR O5:C<&MSUCR118.printf]

ROD ESF, 1@
HWOR ERX,ERAX
POP EEP

RETH

MOW ERX, SR4D0
CHMP _WORD PTR DS:[<STRUCT
JE SHORT @12F1820

H®OR ERX, ERX

P SHORT Bil-Flecd

IMAGE_DOS_HEAD

F

=10l x|

Registers [FFUI

F

ASC

Imm=B00EEELE (decimal 16.
ESP=BE822F925, FTR to ASCII "™a=Xd; b=Xd; c=xd™

HEEEERED
SH3GEESS
BESESFFE
BEEEEREG
BEZZF928
HEZZF222
BEEEEEE1
BEEAEEE0

B1zZF1a14

B ES BEZE
1 C5 BBz3
8 S5 GOzZE
1 DS BEZE
A FS BEEZ
B G5 BEZE
5]

5]

LastErr
EFL BBBEEZ45

MSUCR118. 6H35EESS

FTR to RASCII "a=Hd; b=Hd; o

1.812F16814

22bit BIFFFFFFFF]
32bit BIFFFFFFFF]
Z2bit BIFFFFFFFF)
22bit BLFFFFFFFFE]
22bit TEFDDEEA({FFF]
22bit BIFFFFFFFF]

BEEEEEEE ERROR_SUCCESS
(M0, HE, E.BE, M5, PE, GE,LE]

——T———
Address |Hex dump ASCII [(AMSI o "E1Z2F3EEE B-8) ASCII "a=Hd: b=X
G1ZF300G[6M S0 25 4] 56 20 £2 0| 2t &4 OB 28] 63 S0 25 64| B-rd; bend; o DoccrJcCl | Sagaagal o -
BiZF3010|00 OO B0 OF G OO O G000 OO OO OO G0 B0 00 08 £ DgccPasn | poomoanz @
@iZF3e28| FE FF FF FF|FF FF FF FF|22 S0 3C 48|00 AZ C2 EF|= RG] B
BIZF3A36| 06 OR GO ON GO OO O BO| 61 G5 OO OB B2 SF SE 08 & ErEaer | O] R 1. 31
@17F3640| 12 CE GE B9 DB 0P DO OF| O 09 OO 69| B8 B9 B8 08| 4580 RASSFaan | BEEEGRE] | far L.db
BiZF3ACH| 06 0F B0 G0 G5 OO0 OO 05|00 G5 OO OB 05 G0 G5 OF e i [HoaEaREL B
BiZFI0GE| 00 DO PO 0N GO OO OO G| 00 OO OO OO G0 B0 OO GF B955roag| | BoEBLE S| ot —
BiZF3070| 00 OB B0 05 G5 OO OO B5| 09 GOF OO OB G0 B8 08 08 oo adcl| SaTenGes | Tl e
BIZF3AS6| 06 0F B0 OD) G5 OO OO 00|60 GO OO OB 08 B0 GO GF prEE] e R -
B1ZF3R26| 66 G G0 66 66 00 O 65| 66 66 00 06| 06 G0 G0 66 :

-

Figure 1.10: OllyDbg after printf() execution

Register EAX now contains 0xD (13). Thatis correct, since printf() returns the number of characters

printed. The value of EIP has changed: indeed, now it contains the address of the instruction coming
after CALL printf. ECX and EDX values have changed as well. Apparently, the printf() function’s
hidden machinery used them for its own needs.

A very important fact is that neither the ESP value, nor the stack state have been changed! We clearly
see that the format string and corresponding 3 values are still there. This is indeed the cdec/ calling

convention behavior: callee does not return ESP back to its previous value. The caller is responsible to

do so.

46

1.8. PRINTF() WITH SEVERAL ARGUMENTS

Press F8 again to execute ADD ESP, 10 instruction:

[E cru - main thread, module 1

=10l x|

EFESEEE FUSH_EEF i
g1zF1eat|| - MOU EEP, ESP afpfeaieuere TFRL =
aizrimaz | . PUSH 3 __NECH EASEEESS MSUCR11G. SASSEESS
B12F 1 BEE FUSH 2 E0 BHSBSEFA

FUSH 1 EE} GOBE08Ea

FUSH OFFSET @12F2660 RSE | Eof pacopaas

CALL OWORD PTR O5:C<&MSUCR11B.printf>] Eor aooarans

R ESI GESHH6GE1

i — EDI BEBEEHEE |

RETH EIF B12F1817 1.B12F1817

MO EF, SA4D :

CHP WORD PTR DS: L<STRUCT IHAGE_DDS_HEAD E o D DEE EEpiT BIERRREEEE

R EAn R e A B S5 BEZE 3Zhit BIFFFFFFFF)
| oicriooell - ER 34 JHE ERART Bize gt e s
ER==BEbaaaE0 - 5 S G5 BEZE 32Zbit BIFFFFFFFF)

0 5 LastErr DEABEOEE ERROR_SUCCESS
~ | EFL @o@EBzEZ (MO, NE, HE,A, NS, PO, GE, &) -

Address | Hexn dump ASCII [(AMSI OEZZF 97E | ne" =
D1ZF300A[6L S0 25 4] 55 20 62 0| 2t &4 OB 28] 63 S0 25 64| B-nd; bord; mf ooogroon| tOLPIZ1b e B RETURN from 1.6l
BiZF2R16(00 B0 BB 0P| Bl DA GO BB 0D BE DA 60|60 DO BB 0O e | e L
BiZF2@28| FE FF FF FF|FF FF FF FF|22 ED 2C 48|00 AZ C3 EF|w uelt. EremEsl Bre e gt
B1ZF2E30| 60 B9 B9 05 B9 B3 B9 6D 51 B9 DA B9 ES SF B 0O @ BCeraan|| SagEELe Tkl
B1ZFSA46| 15 CE S5 06|09 00 GO 6D 06 B9 00 09|60 B9 B9 6E| 450 prEEmEe] e R
B1ZF2ECE| 60 B0 BB 0O BE 0R B0 6| 0 BE DR 00| 6D BO BE GO Ereae | i
BiZFZREG| BB GO BB 0P| BO 0R GO 6| 0D BE DR 00| 6D 0O BE 0D e | [EEEE) - —
ciceiord) o8 56 o o o 60 o6 o G o 6o o o8 6 B & shaseoed | eogsemd) >
lgFaaon| oo 0o 06 GF G0 00 00 00|00 G0 DO GE 05 60 60 0o ol o2l 229|| 2R2EFRAC BT =

Figure 1.11: OllyDbg: after ADD ESP, 10 instruction execution

ESP has changed, but the values are still in the stack! Yes, of course; no one needs to set these values

to zeros or something like that. Everything above the stack pointer (SP) is noise or garbage and has no
meaning at all. It would be time consuming to clear the unused stack entries anyway, and no one really
needs to.

GCC

Now let’'s compile the same program in Linux using GCC 4.4.1 and take a look at what we have got in IDA:

main proc near

var_ 10 = dword ptr -10h

var C = dword ptr -0Ch

var 8 = dword ptr -8

var 4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aADBDCD ; "a=%d; b=%d; c=%d"
mov [esp+10h+var 4],
mov [esp+10h+var 8], 2
mov [esp+10h+var C], 1
mov [esp+10h+var 1017,
call _printf
mov eax, 0
leave
retn

main endp

Its noticeable that the difference between the MSVC code and the GCC code is only in the way the ar-
guments are stored on the stack. Here the GCC is working directly with the stack without the use of

PUSH / POP .

GCC and GDB

47

1.8. PRINTF() WITH SEVERAL ARGUMENTS
Let’s try this example also in GDB®® in Linux.

-g option instructs the compiler to include debug information in the executable file.

$ gcc 1.c -g -0 1

$ gdb 1
GNU gdb (GDB) 7.6.1-ubuntu

Reading symbols from /home/dennis/polygon/1l...done.

Listing 1.43: let's set breakpoint on printf()

(gdb) b printf
Breakpoint 1 at 0x80482f0

Run. We don’t have the printf() function source code here, so GDB can’t show it, but may do so.

(gdb) run
Starting program: /home/dennis/polygon/1

Breakpoint 1, printf (format=0x80484f0 "a=%d; b=%d; c=%d") at printf.c:29
29 printf.c: No such file or directory.

Print 10 stack elements. The most left column contains addresses on the stack.

(gdb) x/10w $esp

Oxbffffllc: 0x0804844a 0x080484f0 0x00000001 0x00000002
Oxbffffl2c: 0x00000003 0x08048460 0x00000000 0x00000000
Oxbffffl3c: 0xb7e29905 0x00000001

The very first element is the RA (0x0804844a). We can verify this by disassembling the memory at this
address:

(gdb) x/5i 0x0804844a
0x804844a <main+45>: mov $0x0,%eax
0x804844f <main+50>: leave
0x8048450 <main+51>: ret
0x8048451: xchg %ax,%a
0x8048453: xchg %aX,%a

X X

The two XCHG instructions are idle instructions, analogous to NOPs.

The second element (0x080484f0) is the format string address:

(gdb) x/s 0x080484f0
0x80484f0: "a=%d; b=%d; c=%d"

Next 3 elements (1, 2, 3) are the printf() arguments. The rest of the elements could be just “garbage”

on the stack, but could also be values from other functions, their local variables, etc. We can ignore them
for now.

Run “finish”. The command instructs GDB to “execute all instructions until the end of the function”. In
this case: execute till the end of printf() .

(gdb) finish

Run till exit from #0 printf (format=0x80484f0 "a=%d; b=%d; c=%d") at printf.c:29
main () at 1.c:6

6 return 0;

Value returned is $2 = 13

GDB shows what printf() returned in EAX (13). This is the number of characters printed out, just like
in the OllyDbg example.

We also see “return 0;” and the information that this expression is in the 1.c file at the line 6. Indeed,
the 1.c file is located in the current directory, and GDB finds the string there. How does GDB know

68GNU debugger

48

1.8. PRINTF() WITH SEVERAL ARGUMENTS

which C-code line is being currently executed? This is due to the fact that the compiler, while generating
debugging information, also saves a table of relations between source code line numbers and instruction
addresses. GDB is a source-level debugger, after all.

Let’s examine the registers. 13 in EAX:

(gdb) info registers

eax Oxd 13

ecx 0x0 0

edx 0x0 0

ebx Oxb7fc0000 -1208221696

esp Oxbffff120 Oxbffff120

ebp Oxbffff138 Oxbffff138

esi 0x0 0

edi 0x0 0

eip 0x804844a 0x804844a <main+45>

Let’s disassemble the current instructions. The arrow points to the instruction to be executed next.

(gdb) disas

Dump of assembler code for function main:

0x0804841d <+0>: push %ebp
0x0804841e <+1>: mov %sesp,%ebp
0x08048420 <+3>: and $oxfffffffo,%esp
0x08048423 <+6>: sub $0x10,%esp
0x08048426 <+9>: movl $0x3,0xc (%esp)
0x0804842e <+17>: movl $0x2,0x8(%esp)
0x08048436 <+25>: movl $0x1,0x4 (%esp)
0x0804843e <+33>: movl $0x80484f0, (%esp)
0x08048445 <+40>: call 0x80482f0 <printf@plt>
=> 0x0804844a <+45>: mov $0x0, %eax
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

GDB uses AT&T syntax by default. But it is possible to switch to Intel syntax:

(gdb) set disassembly-flavor intel
(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push ebp

0x0804841e <+1>: mov ebp,esp

0x08048420 <+3>: and esp,Oxfffffffo

0x08048423 <+6>: sub esp,0x10

0x08048426 <+9>: mov DWORD PTR [esp+0xc],0x3

0x0804842e <+17>: mov DWORD PTR [esp+0x8],0x2

0x08048436 <+25>: mov DWORD PTR [esp+0x4],0x1

0x0804843e <+33>: mov DWORD PTR [esp],0x80484f0

0x08048445 <+40>: call 0x80482f0 <printf@plt>
=> 0x0804844a <+45>: mov eax, 0x0

0x0804844f <+50>: leave

0x08048450 <+51>: ret

End of assembler dump.

Execute next instruction. GDB shows ending bracket, meaning, it ends the block.

(gdb) step
7 b

Let’'s examine the registers after the MOV EAX, 0 instruction execution. Indeed EAX is zero at that point.

(gdb) info registers

eax 0x0 0

ecx 0x0 0

edx 0x0 0

ebx Oxb7fcO000 -1208221696
esp Oxbffff120 Oxbffff120
ebp Oxbffff138 Oxbffff138
esi 0x0 0

49

1.8. PRINTF() WITH SEVERAL ARGUMENTS

edi 0x0 0
eip 0x804844f

0x804844f <main+50>

x64: 8 arguments

To see how other arguments are passed via the stack, let’'s change our example again by increasing the
number of arguments to 9 (printf() format string + 8 int variables):

#include <stdio.h>

int main()

{
printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3, 4, 5, 6, 7, 8);
return 0;

I

MSVC

As it was mentioned earlier, the first 4 arguments has to be passed through the RCX, RDX, R8, R9
registers in Win64, while all the rest—via the stack. That is exactly what we see here. However, the MOV

instruction, instead of PUSH, is used for preparing the stack, so the values are stored to the stack in a
straightforward manner.

Listing 1.44: MSVC 2012 x64

$5G2923 DB 'a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d', 0aH, OOH
main PROC
sub rsp, 88
mov DWORD PTR [rsp+64], 8
mov DWORD PTR [rsp+56], 7
mov DWORD PTR [rsp+48], 6
mov DWORD PTR [rsp+40], 5
mov DWORD PTR [rsp+32], 4
mov road, 3
mov ré8d, 2
mov edx, 1
lea rcx, OFFSET FLAT:$5G2923
call printf
; return 0
xor eax, eax
add rsp, 88
ret 0
main ENDP
_TEXT ENDS
END

The observant reader may ask why are 8 bytes allocated for int values, when 4 is enough? Yes, one
has to recall: 8 bytes are allocated for any data type shorter than 64 bits. This is established for the
convenience’s sake: it makes it easy to calculate the address of arbitrary argument. Besides, they are all
located at aligned memory addresses. It is the same in the 32-bit environments: 4 bytes are reserved for
all data types.

GCC

The picture is similar for x86-64 *NIX OS-es, except that the first 6 arguments are passed through the
RDI, RSI, RDX, RCX, R8, R9 registers. All the rest—via the stack. GCC generates the code storing
the string pointer into EDI instead of RDI —we noted that previously: 1.5.2 on page 15.

50

1.8. PRINTF() WITH SEVERAL ARGUMENTS
We also noted earlier that the EAX register has been cleared before a printf() call: 1.5.2 on page 15.

Listing 1.45: Optimizing GCC 4.4.6 x64

.LCO:
.string "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"
main:
sub rsp, 40
mov rad, 5
mov réd, 4
mov ecx, 3
mov edx, 2
mov esi, 1
mov edi, OFFSET FLAT:.LCO
Xor eax, eax ; number of vector registers passed
mov DWORD PTR [rsp+16], 8
mov DWORD PTR [rsp+8], 7
mov DWORD PTR [rsp]l, 6
call printf
; return 0
xor eax, eax
add rsp, 40
ret
GCC + GDB

Let’s try this example in GDB.

$ gcc -g 2.c -0 2

$ gdb 2
GNU gdb (GDB) 7.6.1-ubuntu

Reading symbols from /home/dennis/polygon/2...done.

Listing 1.46: let’s set the breakpoint to printf() , and run

(gdb) b printf

Breakpoint 1 at 0x400410

(gdb) run

Starting program: /home/dennis/polygon/2

Breakpoint 1, printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n") at »
& printf.c:29
29 printf.c: No such file or directory.

Registers RSI /RDX/RCX/R8/R9 have the expected values. RIP has the address of the very first in-
struction of the printf() function.

(gdb) info registers

rax 0x0 0

rbx 0x0 0

rcx 0x3 3

rdx 0x2 2

rsi 0x1 1

rdi 0x400628 4195880

rbp OX7fffffffdfe0 OX7fffffffdfe0
rsp OX7fffffffdf38 OxX7fffffffdf38
r8 0x4 4

ro 0x5 5

rio Ox7fffffffdced 140737488346336
ril Ox7ffff7a65f60 140737348263776
ri2 0x400440 4195392

51

1.8. PRINTF() WITH SEVERAL ARGUMENTS

ri3 Ox7fffffffe0do 140737488347200

ri4 0x0 0

ris 0x0 0

rip Ox7ffff7a65f60 Ox7ffff7a65f60 < printf>

Listing 1.47: let’s inspect the format string

(gdb) x/s $rdi
0x400628:

d; e=%d; f=%d; g=%d; h=%d\n"

Let’s dump the stack with the x/g command this time—g stands for giant words, i.e., 64-bit words.

(gdb) x/10g $rsp

OX7Tffffffdf38: 0x0000000000400576 0x0000000000000006
Ox7fffffffdf48: 0x0000000000000007 0x00007fffOOO00008
Ox7fffffffdf58: 0x0000000000000000 0x06000000000000000
OX7Tffffffdf68: 0x00007ffff7a33de5 0x0000000000000000
Ox7fffffffdf78: 0x00007fffffffe048 0x06000000100000000

The very first stack element, just like in the previous case, is the RA. 3 values are also passed through

the stack: 6, 7, 8. We also see that 8 is passed with the high 32-bits not cleared: 0x00007fff00000008 .
That's OK, because the values are of int type, which is 32-bit. So, the high register or stack element part
may contain “random garbage”.

If you take a look at where the control will return after the printf() execution, GDB will show the entire
main() function:

(gdb) set disassembly-flavor intel
(gdb) disas 0x0000000000400576
Dump of assembler code for function main:

0x000000000040052d <+0>: push rbp

0x000000000040052e <+1>: mov rbp, rsp
0x0000000000400531 <+4>: sub rsp,0x20
0x0000000000400535 <+8>: mov DWORD PTR [rsp+0x10],0x8
0x000000000040053d <+16>: mov DWORD PTR [rsp+0x81],0x7
0x0000000000400545 <+24>: mov DWORD PTR [rsp],0x6
0x000000000040054¢Cc <+31>: mov road, 0x5
0x0000000000400552 <+37>: mov r8d, 0x4
0x0000000000400558 <+43>: mov ecx,0x3
0x000000000040055d <+48>: mov edx, 0x2
0x0000000000400562 <+53>: mov esi,0x1
0x0000000000400567 <+58>: mov edi,0x400628
0x000000000040056¢C <+63>: mov eax, 0x0
0x0000000000400571 <+68>: call 0x400410 <printf@plt>
0x0000000000400576 <+73>: mov eax,0x0
0x000000000040057b <+78>: leave

0x000000000040057¢Cc <+79>: ret

End of assembler dump.

Let’s finish executing printf() , execute the instruction zeroing EAX, and note that the EAX register
has a value of exactly zero. RIP now points to the LEAVE instruction, i.e., the penultimate one in the
main() function.

(gdb) finish
Run till exit from #0 _ printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%v
G d\n") at printf.c:29

a=1l; b=2; c=3; d=4; e=5; f=6; g=7; h=8
main () at 2.c:6

6 return 0;

Value returned is $1 = 39

(gdb) next

7 I

(gdb) info registers

rax 0x0 0

rbx 0x0 0

rcx 0x26 38

rdx OX7ffff7dd59f0 140737351866864

52

1.8. PRINTF() WITH SEVERAL ARGUMENTS

rsi Ox7fffffd9 2147483609

rdi 0x0 0

rbp OX7fffffffdfe0 OX7fffffffdfe0
rsp Ox7fffffffdf40 Ox7fffffffdf40
rg Ox7ffff7dd26a0 140737351853728
ro Ox7ffff7a60134 140737348239668
rio Ox7fffffffd5b0 140737488344496
ril Ox7ffff7a95900 140737348458752
ri2 0x400440 4195392

ri3 Ox7fffffffe@40 140737488347200
ri4 0x0 0

ris 0x0 0

rip 0x40057b 0x40057b <main+78>
1.8.2 ARM

ARM: 3 arguments

ARM'’s traditional scheme for passing arguments (calling convention) behaves as follows: the first 4 argu-
ments are passed through the RO - R3 registers; the remaining arguments via the stack. This resembles
the arguments passing scheme in fastcall (6.1.3 on page 733) or win64 (6.1.5 on page 735).

32-bit ARM

Non-optimizing Keil 6/2013 (ARM mode)

Listing 1.48: Non-optimizing Keil 6/2013 (ARM mode)

.text: 00000000 main

.text:00000000 10 40 2D E9 STMFD SP!, {R4,LR}

.text:00000004 03 30 AO E3 MOV R3, #3

.text:00000008 02 20 AO E3 MOV R2, #2

.text:0000000C 01 10 A0 E3 MOV R1, #1

.text:00000010 08 00 8F E2 ADR RO, aADBDCD ; "a=%d; b=%d; c=%d"
.text:00000014 06 00 00 EB BL __2printf

.text:00000018 00 00 AO E3 MOV RO, #0 ; return 0
.text:0000001C 10 80 BD E8 LDMFD SP!, {R4,PC}

So, the first 4 arguments are passed via the RO - R3 registers in this order: a pointer to the printf()

format stringin RO, then1in R1, 2 in R2 and 3 in R3. The instruction at 0x18 writes 0 to RO —this is
return 0 C-statement. There is nothing unusual so far.

Optimizing Keil 6/2013 generates the same code.

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.49: Optimizing Keil 6/2013 (Thumb mode)

.text:00000000 main

.text:00000000 10 B5 PUSH {R4,LR}

.text:00000002 03 23 MOVS R3, #3

.text:00000004 02 22 MOVS R2, #2

.text:00000006 01 21 MOVS R1, #1

.text:00000008 02 A0 ADR RO, aADBDCD ; "a=%d; b=%d; c=%d"
.text:0000000A 00 FO 0D F8 BL _ 2printf

.text:0000000E 00 20 MOVS RO, #0

.text:00000010 10 BD POP {R4,PC}

There is no significant difference from the non-optimized code for ARM mode.

53

1.8. PRINTF() WITH SEVERAL ARGUMENTS
Optimizing Keil 6/2013 (ARM mode) + let’s remove return

Let’s rework example slightly by removing return 0:

#include <stdio.h>

void main()

{
+;

printf("a=%d; b=%d; c=%d", 1, 2, 3);

The result is somewhat unusual:

Listing 1.50: Optimizing Keil 6/2013 (ARM mode)

.text:00000014 main

.text:00000014 03 30 A0 E3 MOV R3, #3

.text:00000018 02 20 A0 E3 MOV R2, #2

.text:0000001C 01 10 AO E3 MOV R1, #1

.text:00000020 1E OE 8F E2 ADR RO, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000024 CB 18 00 EA B __2printf

This is the optimized (-03) version for ARM mode and this time we see B as the last instruction instead
of the familiar BL . Another difference between this optimized version and the previous one (compiled
without optimization) is the lack of function prologue and epilogue (instructions preserving the RO and
LR registers values). The B instruction just jumps to another address, without any manipulation of the LR

register, similar to JMP in x86. Why does it work? Because this code is, in fact, effectively equivalent to
the previous. There are two main reasons: 1) neither the stack nor SP (the stack pointer) is modified; 2)

the call to printf() is the last instruction, so there is nothing going on afterwards. On completion, the
printf() function simply returns the control to the address stored in LR. Since the LR currently stores

the address of the point from where our function has been called then the control from printf() will

be returned to that point. Therefore we do not have to save LR because we do not have necessity to
modify LR. And we do not have necessity to modify LR because there are no other function calls except

printf () . Furthermore, after this call we do not to do anything else! That is the reason such optimization
is possible.

This optimization is often used in functions where the last statement is a call to another function. A similar
example is presented here: 1.15.1 on page 156.

ARM64

Non-optimizing GCC (Linaro) 4.9

Listing 1.51: Non-optimizing GCC (Linaro) 4.9

.LC1:
.string "a=%d; b=%d; c=%d"
f2:
; save FP and LR in stack frame:
stp x29, x30, [sp, -16]!
; set stack frame (FP=SP):
add x29, sp, ©
adrp x0, .LC1
add x0, x0, :lol2:.LC1
mov wl, 1
mov w2, 2
mov w3, 3
bl printf
mov woO, 0
; restore FP and LR
ldp x29, x30, [sp], 16
ret

54

1.8. PRINTF() WITH SEVERAL ARGUMENTS

The firstinstruction STP (Store Pair) saves FP (X29) and LR (X30) in the stack. The second ADD X29, SP, O
instruction forms the stack frame. It is just writing the value of SP into X29.

Next, we see the familiar ADRP / ADD instruction pair, which forms a pointer to the string. /o012 meaning
low 12 bits, i.e., linker will write low 12 bits of LC1 address into the opcode of ADD instruction. %d in
printf() string formatis a 32-bit int, so the 1, 2 and 3 are loaded into 32-bit register parts.

Optimizing GCC (Linaro) 4.9 generates the same code.

ARM: 8 arguments

Let’s use again the example with 9 arguments from the previous section: 1.8.1 on page 50.

#include <stdio.h>

int main()

{
printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3, 4, 5, 6, 7, 8);
return 0;

+

Optimizing Keil 6/2013: ARM mode

. text:00000028 main
.text:00000028

.text:00000028 var_18 = -0x18
. text:00000028 var_14 = -0x14
. text:00000028 var 4 = -4

.text:00000028

.text:00000028 04 EO 2D E5 STR LR, [SP,#var 4]!

.text:0000002C 14 DO 4D E2 SUB SP, SP, #0x14

.text: 00000030 08 30 AO@ E3 MOV R3, #8

.text:00000034 07 20 A@ E3 MOV R2, #7

.text:00000038 06 10 A0 E3 MOV R1, #6

.text:0000003C 05 00 A0 E3 MOV RO, #5

.text:00000040 04 CO 8D E2 ADD R12, SP, #0x18+var_ 14

.text:00000044 OF 00 8C E8 STMIA R12, {RO-R3}

.text: 00000048 04 00 AO E3 MOV RO, #4

.text:0000004C 00 00 8D E5 STR RO, [SP,#0x18+var_ 18]

.text: 00000050 03 30 A0 E3 MOV R3, #3

.text:00000054 02 20 A®@ E3 MOV R2, #2

.text:00000058 01 10 A0 E3 MOV R1, #1

.text:0000005C 6E OF 8F E2 ADR RO, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g~
G =%"...

.text: 00000060 BC 18 00 EB BL __2printf

.text:00000064 14 DO 8D E2 ADD SP, SP, #0x14

.text:00000068 04 FO 9D E4 LDR PC, [SP+4+var 4],#4

This code can be divided into several parts:
* Function prologue:

The very first STR LR, [SP,#var 4]! instruction saves LR on the stack, because we are going to
use this register for the printf() call. Exclamation mark at the end indicates pre-index.

This implies that SP is to be decreased by 4 first, and then LR will be saved at the address stored in
SP. This is similar to PUSH in x86. Read more about it at: 1.32.2 on page 441.

The second SUB SP, SP, #0x14 instruction decreases SP (the stack pointer) in order to allocate

0x14 (20) bytes on the stack. Indeed, we have to pass 5 32-bit values via the stack to the printf()

function, and each one occupies 4 bytes, which is exactly 5 » 4 = 20. The other 4 32-bit values are to
be passed through registers.

55

1.8. PRINTF() WITH SEVERAL ARGUMENTS

* Passing 5, 6, 7 and 8 via the stack: they are stored in the RO , R1, R2 and R3 registers respec-
tively.

Then, the ADD R12, SP, #0x18+var 14 instruction writes the stack address where these 4 vari-
ables are to be stored, into the R12 register. var_14 is an assembly macro, equal to -0x14, created
by IDA to conveniently display the code accessing the stack. The var_? macros generated by IDA
reflect local variables in the stack.

So, SP+4 is to be stored into the R12 register.

The next STMIA R12, RO-R3 instruction writes registers RO - R3 contents to the memory pointed

by R12. STMIA abbreviates Store Multiple Increment After. “Increment After” implies that R12 is
to be increased by 4 after each register value is written.

Passing 4 via the stack: 4 is stored in RO and then this value, with the help of the
STR RO, [SP,#0x18+var 18] instruction is saved on the stack. var_18 is -0x18, so the offset is to

be 0, thus the value from the RO register (4) is to be written to the address written in SP.
Passing 1, 2 and 3 via registers: The values of the first 3 numbers (a, b, ¢) (1, 2, 3 respectively)

are passed through the R1, R2 and R3 registers right before the printf() call, and the other 5
values are passed via the stack:

printf() call.
Function epilogue:

The ADD SP, SP, #0x14 instruction restores the SP pointer back to its former value, thus annulling
everything what has been stored on the stack. Of course, what has been stored on the stack will
stay there, but it will all be rewritten during the execution of subsequent functions.

The LDR PC, [SP+4+var 4],#4 instruction loads the saved LR value from the stack into the PC reg-
ister, thus causing the function to exit. There is no exclamation mark—indeed, PC is loaded first from
the address stored in SP (44-var_4 = 4+(-4) = 0, so this instruction is analogous to LDR PC, [SP],#4),
and then SP is increased by 4. This is referred as post-index®?. Why does IDA display the instruction
like that? Because it wants to illustrate the stack layout and the fact that var 4 is allocated for

saving the LR value in the local stack. This instruction is somewhat similar to POP PC in x867°.

Optimizing Keil 6/2013: Thumb mode

.text:0000001C printf main2

.text:0000001C

.text:0000001C var_18 = -0x18

.text:0000001C var_14 = -0x14

.text:0000001C var 8 = -8

.text:0000001C

.text:0000001C 00 B5 PUSH {LR}

.text:0000001E 08 23 MOVS R3, #8

.text:00000020 85 BO SuB SP, SP, #0x14

.text:00000022 04 93 STR R3, [SP,#0x18+var 8]

.text:00000024 07 22 MOVS R2, #7

.text:00000026 06 21 MOVS R1, #6

.text:00000028 05 20 MOVS RO, #5

.text:0000002A 01 AB ADD R3, SP, #0x18+var 14

.text:0000002C 07 C3 STMIA R3!, {RO-R2}

.text:0000002E 04 20 MOVS RO, #4

.text: 00000030 00 90 STR RO, [SP,#0x18+var 18]

.text:00000032 03 23 MOVS R3, #3

.text:00000034 02 22 MOVS R2, #2

.text:00000036 01 21 MOVS R1, #1

.text:00000038 AO A0 ADR RO, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d;
G g=%"...

.text:0000003A 06 FO D9 F8 BL _ 2printf

.text:0000003E

.text:0000003E loc 3E ; CODE XREF: examplel3 f+16

69Read more about it: 1.32.2 on page 441.
70t is impossible to set IP/EIP/RIP value using POP in x86, but anyway, you got the analogy right.

56

1.8. PRINTF() WITH SEVERAL ARGUMENTS

.text:0000003E 05 BO ADD SP, SP, #0x14
.text:00000040 00 BD POP {PC}

The output is almost like in the previous example. However, this is Thumb code and the values are packed
into stack differently: 8 goes first, then 5, 6, 7, and 4 goes third.

Optimizing Xcode 4.6.3 (LLVM): ARM mode

_ text:0000290C _printf main2
_ text:0000290C

_ text:0000290C var_1C = -0x1C
_ text:0000290C var C = -0xC

_ text:0000290C

~ text:0000290C 80 40 2D E9 STMFD SP!, {R7,LR}

~ text:00002910 0D 70 A® E1 MOV R7, SP

~ text:00002914 14 DO 4D E2 SUB SP, SP, #0x14
~ text:00002918 70 05 01 E3 MOV RO, #0x1570

~ text:0000291C 07 CO A®@ E3 MOV R12, #7

_ text:00002920 00 00 40 E3 MOVT RO, #0

~ text:00002924 04 20 A® E3 MOV R2, #4

_ text:00002928 00 00 8F E® ADD RO, PC, RO

~ text:0000292C 06 30 A@ E3 MOV R3, #6

~ text:00002930 05 10 A@ E3 MOV R1, #5

~ text:00002934 00 20 8D E5 STR R2, [SP,#0x1C+var 1C]
~ text:00002938 OA 10 8D E9 STMFA SP, {R1,R3,R12}
~ text:0000293C 08 90 A@ E3 MOV RO, #8

~ text:00002940 01 10 A® E3 MOV R1, #1

_ text:00002944 02 20 A@ E3 MOV R2, #2

~ text:00002948 03 30 A@ E3 MOV R3, #3

~ text:0000294C 10 90 8D E5 STR R9, [SP,#0x1C+var C]
~ text:00002950 A4 05 00 EB BL printf

~ text:00002954 07 DO A@ E1 MOV SP, R7

~ text:00002958 80 80 BD E8 LDMFD SP!, {R7,PC}

Almost the same as what we have already seen, with the exception of STMFA (Store Multiple Full As-

cending) instruction, which is a synonym of STMIB (Store Multiple Increment Before) instruction. This
instruction increases the value in the SP register and only then writes the next register value into the
memory, rather than performing those two actions in the opposite order.

Another thing that catches the eye is that the instructions are arranged seemingly random. For example,
the value in the RO register is manipulated in three places, at addresses 0x2918 , 0x2920 and 0x2928,
when it would be possible to do it in one point.

However, the optimizing compiler may have its own reasons on how to order the instructions so to achieve
higher efficiency during the execution.

Usually, the processor attempts to simultaneously execute instructions located side-by-side.
For example, instructions like MOVT RO, #0 and ADD RO, PC, RO cannot be executed simultaneously

since they both modify the RO register. On the other hand, MOVT RO, #0 and MOV R2, #4 instructions
can be executed simultaneously since the effects of their execution are not conflicting with each other.
Presumably, the compiler tries to generate code in such a manner (wherever it is possible).

Optimizing Xcode 4.6.3 (LLVM): Thumb-2 mode

_ text:00002BA0 _printf_main2

_ text:00002BA0

_ text:00002BA0 var_1C = -0x1C

_ text:00002BA0 var_18 = -0x18

_ text:00002BA0 var C = -0xC

_ text:00002BA0

_ text:00002BAO 80 B5 PUSH {R7,LR}

_ text:00002BA2 6F 46 MoV R7, SP

_ text:00002BA4 85 BO SUB SP, SP, #0x14
_ text:00002BA6 41 F2 D8 20 MOvW RO, #0x12D8

57

1.8. PRINTF() WITH SEVERAL ARGUMENTS

_ text:00002BAA 4F FO 07 0OC MOV.W R12, #7
_text:00002BAE CO F2 00 00 MOVT.W RO, #0

_ text:00002BB2 04 22 MOVS R2, #4

_ text:00002BB4 78 44 ADD RO, PC ; char *

_ text:00002BB6 06 23 MOVS R3, #6

_ text:00002BB8 05 21 MOVS R1, #5

_ text:00002BBA 0D F1 04 OE ADD.W LR, SP, #0x1C+var 18
__ text:00002BBE 00 92 STR R2, [SP,#0x1C+var 1C]

_ text:00002BCO 4F FO 08 09 MOV.W R9, #8
_ text:00002BC4 8E E8 OA 10 STMIA.W LR, {R1,R3,R12}

_ text:00002BC8 01 21 MOVS R1, #1

_ text:00002BCA 02 22 MOVS R2, #2

_ text:00002BCC 03 23 MOVS R3, #3

_ text:00002BCE CD F8 10 90 STR.W R9, [SP,#0x1C+var C]
_ text:00002BD2 01 FO OA EA BLX _printf
_text:00002BD6 05 BO ADD SP, SP, #0x14
_text:00002BD8 80 BD POP {R7,PC}

The output is almost the same as in the previous example, with the exception that Thumb-instructions
are used instead.

ARM64

Non-optimizing GCC (Linaro) 4.9

Listing 1.52: Non-optimizing GCC (Linaro) 4.9

.LC2:
.string "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"
f3:
; grab more space in stack:
sub sp, sp, #32
; save FP and LR in stack frame:
stp x29, x30, [sp,16]
; set stack frame (FP=SP):
add x29, sp, 16
adrp x0, .LC2 ; "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"
add x0, x0, :lol2:.LC2
mov wl, 8 ; 9th argument
str wl, [sp] ; store 9th argument in the stack
mov wl, 1
mov w2, 2
mov w3, 3
mov w4, 4
mov w5, 5
mov w6, 6
mov w7, 7
bl printf
sub sp, x29, #16
; restore FP and LR
1dp x29, x30, [sp,16]
add sp, sp, 32
ret

The first 8 arguments are passed in X- or W-registers: [Procedure Call Standard for the ARM 64-bit Archi-
tecture (AArch64), (2013)]1’%. A string pointer requires a 64-bit register, so it's passed in X0 . All other
values have a int 32-bit type, so they are stored in the 32-bit part of the registers (W-). The 9th argument
(8) is passed via the stack. Indeed: it's not possible to pass large number of arguments through registers,
because the number of registers is limited.

Optimizing GCC (Linaro) 4.9 generates the same code.

71Also available as http://go.yurichev.com/17287

58

http://go.yurichev.com/17287

1.8. PRINTF() WITH SEVERAL ARGUMENTS
1.8.3 MIPS

3 arguments

Optimizing GCC 4.4.5

The main difference with the “Hello, world!” example is that in this case printf() is called instead of

puts() and 3 more arguments are passed through the registers $5...$7 (or $A0...$A2). That is why these
registers are prefixed with A-, which implies they are used for function arguments passing.

Listing 1.53: Optimizing GCC 4.4.5 (assembly output)

$LCO:
.ascii "a=%d; b=%d; c=%d\000"
main:
; function prologue:
lui $28,%hi(__gnu local gp)
addiu $sp, $sp, -32
addiu $28,%$28,%lo(__gnu local gp)
sw $31,28($sp)
; load address of printf():
w $25,%callle(printf) ($28)
; load address of the text string and set 1lst argument of printf():
lui $4,%hi($LCO)

addiu $4,%$4,%1Lo($LCO)
; set 2nd argument of printf():

1i $5,1 # 0Ox1
; set 3rd argument of printf():
1i $6,2 # 0x2
; call printf():
jalr $25
; set 4th argument of printf() (branch delay slot):
1i $7,3 # 0x3

; function epilogue:
w $31,28($sp)
; set return value to O:
move $2,%0
; return
j $31
addiu $sp,$sp,32 ; branch delay slot

Listing 1.54: Optimizing GCC 4.4.5 (IDA)

.text: 00000000 main:
.text: 00000000

.text:00000000 var 10 = -0x10

.text: 00000000 var 4 = -4

.text:00000000

; function prologue:

.text:00000000 lui $gp, (__gnu local gp >> 16)
.text:00000004 addiu $sp, -0x20

.text:00000008 la $gp, (__gnu local gp & OXFFFF)
.text:0000000C sw $ra, 0x20+var _4($sp)
.text:00000010 sw $gp, 0x20+var 10($sp)

; load address of printf():

.text:00000014 lw $t9, (printf & OXFFFF) ($gp)
; Lload address of the text string and set 1st argument of printf():
.text:00000018 la $a0, $LCO # "a=%d; b=%d; c=%d"
; set 2nd argument of printf():

.text:00000020 1i $al, 1

; set 3rd argument of printf():

.text:00000024 11 $a2, 2

; call printf():

.text:00000028 jalr $t9

; set 4th argument of printf() (branch delay slot):

.text:0000002C 1i $a3, 3

; function epilogue:

.text:00000030 lw $ra, 0x20+var _4($sp)

59

1.8. PRINTF() WITH SEVERAL ARGUMENTS
; set return value to 0O:

.text:00000034 move $v0, $zero

; return

.text: 00000038 jr $ra

.text:0000003C addiu $sp, 0x20 ; branch delay slot

IDA has coalesced pair of LUI and ADDIU instructions into one LA pseudo instruction. That's why there
are no instruction at address 0x1C: because LA occupies 8 bytes.

Non-optimizing GCC 4.4.5

Non-optimizing GCC is more verbose:

Listing 1.55: Non-optimizing GCC 4.4.5 (assembly output)

$LCO:

.ascii "a=%d; b=%d; c=%d\000"
main:
; function prologue:

addiu $sp, $sp, -32

sw $31,28($sp)

sw $fp,24($sp)

move $fp, $sp

lui $28,%hi(_gnu local gp)

addiu $28,$28,%lo(__gnu local gp)
; load address of the text string:

lui $2,%hi($LCO)

addiu $2,%$2,%Lo($LCO)
; set 1lst argument of printf():

move $4,4%2
; set 2nd argument of printf():

1i $5,1 # Ox1
; set 3rd argument of printf():

11 $6,2 # 0x2
; set 4th argument of printf():

1i $7,3 # 0x3
; get address of printf():

lw $2,%calll6(printf) ($28)

nop

; call printf():
move $25,%2
jalr $25
nop

; function epilogue:

w $28,16($fp)
; set return value to 0:

move $2,%0

move $sp,$fp

w $31,28($sp)

lw $fp,24($sp)

addiu $sp,$sp, 32
; return

j $31

nop

Listing 1.56: Non-optimizing GCC 4.4.5 (IDA)

.text: 00000000 main:
.text: 00000000

.text:00000000 var 10 = -0x10

.text: 00000000 var 8 = -8

.text:00000000 var 4 = -4

.text:00000000

; function prologue:

.text: 00000000 addiu $sp, -0x20
.text:00000004 sw $ra, 0x20+var 4($sp)
.text:00000008 sw $fp, 0x20+var 8($sp)

60

1.8. PRINTF() WITH SEVERAL ARGUMENTS

.text:0000000C move $fp, $sp
.text:00000010 la $gp, _ gnu_local gp
.text:00000018 sw $gp, 0x20+var_10($sp)
; load address of the text string:

.text:0000001C la $v0, aADBDCD # "a=%d; b=%d; c=%d"
; set 1st argument of printf():

.text:00000024 move $a0, $vO

; set 2nd argument of printf():

.text:00000028 1i $al, 1

; set 3rd argument of printf():

.text:0000002C 1i $a2, 2

; set 4th argument of printf():

.text:00000030 1i $a3, 3

; get address of printf():

.text:00000034 lw $v0, (printf & OXFFFF) ($gp)
.text:00000038 or $at, $zero

; call printf():

.text:0000003C move $t9, $vO
.text:00000040 jalr $t9

.text:00000044 or $at, $zero ; NOP

; function epilogue:

.text:00000048 lw $gp, 0x20+var 10($fp)
; set return value to 0:

.text:0000004C move $v0, $zero

.text: 00000050 move $sp, $fp
.text:00000054 lw $ra, 0x20+var 4($sp)
.text:00000058 lw $fp, 0x20+var 8($sp)
.text:0000005C addiu $sp, Ox20

; return

.text:00000060 jr $ra

.text:00000064 or $at, $zero ; NOP

8 arguments

Let’s use again the example with 9 arguments from the previous section: 1.8.1 on page 50.

#include <stdio.h>

int main()

{
printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3, 4, 5, 6, 7, 8);
return 0;

+

Optimizing GCC 4.4.5

Only the first 4 arguments are passed in the $A0 ...$A3 registers, the rest are passed via the stack.

This is the 032 calling convention (which is the most common one in the MIPS world). Other calling
conventions (like N32) may use the registers for different purposes.

SW abbreviates “Store Word” (from register to memory). MIPS lacks instructions for storing a value into
memory, so an instruction pair has to be used instead (LI / SW).

Listing 1.57: Optimizing GCC 4.4.5 (assembly output)

$LCO:
.ascii "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\012\000"
main:
; function prologue:
lui $28,%hi(_gnu local gp)
addiu $sp,$sp, -56
addiu $28,%$28,%lo(__gnu local gp)
Sw $31,52($sp)
; pass 5th argument in stack:
11 $2,4 # Ox4

61

1.8. PRINTF() WITH SEVERAL ARGUMENTS

; pass

; pass

; pass

; pass

; pass

; pass
; pass
; call

; pass

Sw $2,16($sp)
6th argument in stack:
1i $2,5 # 0x5
Sw $2,20($sp)
7th argument in stack:
1i $2,6 # Ox6
sw $2,24(%sp)
8th argument in stack:
1i $2,7 # Ox7
w $25,%callle(printf) ($28)
sw $2,28(%sp)
1st argument in $a0:
lui $4,%hi($LCO)
9th argument in stack:
1i $2,8 # 0x8
Sw $2,32($sp)
addiu $4,%$4,%lo($LCO)
2nd argument in $al:
1i $5,1 # 0Ox1
3rd argument in $a2:
1i $6,2 # 0x2
printf():
jalr $25

4th argument in $a3 (branch delay slot):

1i

$7,3

; function epilogue:
$31,52(%sp)
; set return value to 0:

w

0x3

move $2,%0
; return

j $31

addiu $sp,$sp,56 ; branch delay slot

Listing 1.58: Optimizing GCC 4.4.5 (IDA)
.text: 00000000 main:
.text: 00000000
.text:00000000 var 28 = -0x28
.text:00000000 var 24 = -0x24
.text:00000000 var 20 = -0x20
.text:00000000 var_ 1C = -0x1C
.text:00000000 var 18 = -0x18
.text:00000000 var 10 = -0x10
.text:00000000 var 4 = -4
.text: 00000000
; function prologue:
.text:00000000 lui $gp, (__gnu_ local gp >> 16)
.text:00000004 addiu $sp, -0x38
.text: 00000008 la $gp, (__gnu local gp & OxFFFF)
.text:0000000C sw $ra, 0x38+var 4($sp)
.text:00000010 sw $gp, 0x38+var 10($sp)
; pass 5th argument in stack:
.text:00000014 1i $vo, 4
.text:00000018 sw $v0, 0x38+var 28($sp)
; pass 6th argument in stack:
.text:0000001C 1i $v0, 5
.text:00000020 sw $v0, 0x38+var 24($sp)
; pass 7th argument in stack:
.text:00000024 1i $v0, 6
.text:00000028 sw $v0, 0x38+var 20($sp)
; pass 8th argument in stack:
.text:0000002C 1i $vo, 7
.text:00000030 lw $t9, (printf & OXFFFF) ($gp)
.text:00000034 sw $v0, 0x38+var_1C($sp)
; prepare 1lst argument in $a0:
.text:00000038 lui $a0, ($LCO >> 16) # "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d.
G og=%". ..

; pass 9th argument in stack:
.text:0000003C 1i $v0, 8

62

1.8. PRINTF() WITH SEVERAL ARGUMENTS

.text:00000040 sw $v0O, 0x38+var_18($sp)

; pass 1lst argument in $a0:

.text:00000044 la $a0, ($LCO & OXFFFF) # "a=%d; b=%d; c=%d; d=%d; e=%d; f.
G =%d; g=%"...

; pass 2nd argument in $al:

.text:00000048 1i $al, 1

; pass 3rd argument in $a2:

.text:0000004C 1i $a2, 2

; call printf():

.text: 00000050 jalr $t9

; pass 4th argument in $a3 (branch delay slot):

.text:00000054 1i $a3, 3

; function epilogue:

.text:00000058 lw $ra, 0x38+var 4($sp)

; set return value to 0:

.text:0000005C move $v0, $zero

; return

.text: 00000060 jr $ra

.text:00000064 addiu $sp, 0x38 ; branch delay slot

Non-optimizing GCC 4.4.5

Non-optimizing GCC is more verbose:

Listing 1.59: Non-optimizing GCC 4.4.5 (assembly output)

$LCO:

.ascii "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\012\000"
main:
; function prologue:

addiu $sp, $sp, -56

sw $31,52($sp)

sw $fp,48($sp)

move $fp, $sp

lui $28,%hi(_gnu local gp)
addiu $28,%$28,%lo(__gnu local gp)
lui $2,%hi($LCO)

addiu $2,%$2,%Lo($LCO)
; pass 5th argument in stack:

1i $3,4 # 0x4
sw $3,16($sp)

; pass 6th argument in stack:
1i $3,5 # 0x5
sw $3,20($sp)

; pass 7th argument in stack:
1i $3,6 # Ox6
sw $3,24($sp)

; pass 8th argument in stack:
1i $3,7 # 0x7
sw $3,28($sp)

; pass 9th argument in stack:
1i $3,8 # 0x8
sw $3,32($sp)

; pass 1lst argument in $a0:
move $4,%$2
; pass 2nd argument in $al:

1i $5,1 # 0Ox1
; pass 3rd argument in $a2:

1i $6,2 # 0x2
; pass 4th argument in $a3:

1i $7,3 # 0x3
; call printf():

lw $2,%calll6(printf) ($28)

nop

move $25,%$2

jalr $25

nop

; function epilogue:

63

1.8. PRINTF() WITH SEVERAL ARGUMENTS

w $28,40($fp)
; set return value to 0:

move $2,%0

move $sp, $fp

w $31,52($sp)

lw $fp,48($sp)

addiu $sp, $sp,56
; return

j $31

nop

Listing 1.60: Non-optimizing GCC 4.4.5 (IDA)
.text: 00000000 main:
.text: 00000000
.text:00000000 var 28 = -0x28
.text: 00000000 var 24 = -0x24
.text:00000000 var 20 = -0x20
.text:00000000 var 1C = -0x1C
.text: 00000000 var 18 = -0x18
.text:00000000 var 10 = -0x10
.text:00000000 var_8 = -8
.text: 00000000 var 4 = -4
.text: 00000000
; function prologue:
.text:00000000 addiu $sp, -0x38
.text:00000004 sw $ra, 0x38+var 4($sp)
.text:00000008 sw $fp, 0x38+var 8($sp)
.text:0000000C move $fp, $sp
.text:00000010 la $gp, __gnu_local gp
.text:00000018 sw $gp, 0x38+var 10($sp)
.text:0000001C la $v0, aADBDCDDDEDFDGD # "a=%d; b=%d; c=%d; d=%d; e=%d; f.
G =%d; g=%"...

; pass 5th argument in stack:
.text:00000024 1i $vl, 4
.text:00000028 sw $v1l, 0x38+var 28($sp)
; pass 6th argument in stack:
.text:0000002C 1i $vl, 5
.text:00000030 sw $v1l, 0x38+var 24($sp)
; pass 7th argument in stack:
.text:00000034 1i $vl, 6
.text:00000038 sw $v1l, 0x38+var 20($sp)
; pass 8th argument in stack:
.text:0000003C 1i $vl, 7
.text:00000040 sw $vl, 0x38+var_1C($sp)
; pass 9th argument in stack:
.text:00000044 1i $vl, 8
.text:00000048 sw $vl, 0x38+var_18($sp)
; pass 1lst argument in $a0:
.text:0000004C move $a0, $vO
; pass 2nd argument in $al:
.text:00000050 1i $al, 1
; pass 3rd argument in $a2:
.text: 00000054 1i $a2, 2
; pass 4th argument in $a3:
.text:00000058 1i $a3, 3
; call printf():
.text:0000005C lw $v0, (printf & OXFFFF) ($gp)
.text:00000060 or $at, $zero
.text: 00000064 move $t9, $vO
.text:00000068 jalr $t9
.text:0000006C or $at, $zero ; NOP
; function epilogue:
.text:00000070 Tw $gp, 0x38+var_10($fp)
; set return value to O:
.text:00000074 move $v0, $zero
.text:00000078 move $sp, $fp
.text:0000007C lw $ra, 0x38+var 4($sp)
.text: 00000080 w $fp, 0x38+var_8($sp)
.text:00000084 addiu $sp, Ox38

64

1.8. PRINTF() WITH SEVERAL ARGUMENTS

; return

. text:00000088
. text:0000008C

$ra
$at, $zero ; NOP

1.8.4 Conclusion

Here is a rough skeleton of the function call:

Listing 1.61: x86

PUSH 3rd argument
PUSH 2nd argument
PUSH 1st argument
CALL function

; modify stack pointer (if needed)

Listing 1.62: x64 (MSVC)

MOV RCX, 1st argument
MOV RDX, 2nd argument

MOV R8, 3rd argument
MOV R9, 4th argument

PUSH 5th, 6th argument, etc. (if needed)
CALL function

; modify stack pointer (if needed)

Listing 1.63: x64 (GCC)

MoV
MOV
MoV
MoV
MOV
MoV

RDI,

1st argument
RSI, 2nd argument
RDX, 3rd argument
RCX, 4th argument

R8, 5th argument
R9, 6th argument

PUSH 7th, 8th argument, etc. (if needed)
CALL function

; modify stack pointer (if needed)

Listing 1.64: ARM

MOV
MoV
MOV
MOV

RO,
R1,
R2,
R3,

1st
2nd
3rd
4th

; pass 5th,
BL function

; modify stack pointer (if needed)

argument
argument
argument
argument

6th argument, etc., in stack (if needed)

Listing 1.65: ARM64

MOV
MOV
MoV
MOV
MOV
MoV
MOV
MOV

X0,
X1,
X2,
X3,
X4,
X5,
X6,
X7,

1st
2nd
3rd
4th
5th
6th
7th
8th

; pass 9th,
BL function

; modify stack pointer (if needed)

argument
argument
argument
argument
argument
argument
argument
argument

10th argument, etc., in stack (if needed)

65

1.9. SCANF()

Listing 1.66: MIPS (032 calling convention)

LI $4, 1st argument ; AKA $A0Q

LI $5, 2nd argument ; AKA $Al

LI $6, 3rd argument ; AKA $A2

LI $7, 4th argument ; AKA $A3

; pass 5th, 6th argument, etc., in stack (if needed)
LW temp reg, address of function

JALR temp reg

1.8.5 By the way

By the way, this difference between the arguments passing in x86, x64, fastcall, ARM and MIPS is a good
illustration of the fact that the CPU is oblivious to how the arguments are passed to functions. It is also
possible to create a hypothetical compiler able to pass arguments via a special structure without using
stack at all.

MIPS $A0 ...$A3 registers are labeled this way only for convenience (that is in the 032 calling convention).
Programmers may use any other register (well, maybe except $ZERO) to pass data or use any other calling
convention.

The CPU is not aware of calling conventions whatsoever.

We may also recall how new coming assembly language programmers passing arguments into other func-
tions: usually via registers, without any explicit order, or even via global variables. Of course, it works
fine.

1.9 scanf()
Now let’s use scanf().

1.9.1 Simple example

#include <stdio.h>

int main()

{
int x;
printf ("Enter X:\n");
scanf ("%d", &x);

printf ("You entered %d...\n", Xx);

return 0;

i

It’s not clever to use scanf() for user interactions nowadays. But we can, however, illustrate passing a
pointer to a variable of type int.

About pointers

Pointers are one of the fundamental concepts in computer science. Often, passing a large array, structure
or object as an argument to another function is too expensive, while passing their address is much cheaper.
For example, if you going to print a text string to console, it’'s much easier to pass its address into OS kernel.

In addition if the callee function needs to modify something in the large array or structure received as a
parameter and return back the entire structure then the situation is close to absurd. So the simplest thing
to do is to pass the address of the array or structure to the callee function, and let it change what needs
to be changed.

A pointer in C/C++—is simply an address of some memory location.

66

1.9. SCANF()

In x86, the address is represented as a 32-bit number (i.e., it occupies 4 bytes), while in x86-64 it is a 64-
bit number (occupying 8 bytes). By the way, that is the reason behind some people’s indignation related
to switching to x86-64—all pointers in the x64-architecture require twice as much space, including cache
memory, which is “expensive” memory.

Itis possible to work with untyped pointers only, given some effort; e.g. the standard C function memcpy() ,

that copies a block from one memory location to another, takes 2 pointers of type void* as arguments,
since it is impossible to predict the type of the data you would like to copy. Data types are not important,
only the block size matters.

Pointers are also widely used when a function needs to return more than one value (we are going to get
back to this later (3.23 on page 626)).

scanf() function—is such a case.

Besides the fact that the function needs to indicate how many values were successfully read, it also needs
to return all these values.

In C/C++ the pointer type is only needed for compile-time type checking.
Internally, in the compiled code there is no information about pointer types at all.

x86

MSVC

Here is what we get after compiling with MSVC 2010:

CONST SEGMENT

$5G3831 DB "Enter X:', 0OaH, OOH

$5G3832 DB 'ssd', OOH

$5G3833 DB 'You entered %d...', 0aH, OOH
CONST ENDS

PUBLIC _main

EXTRN _scanf:PROC

EXTRN _printf:PROC

; Function compile flags: /0dtp
_TEXT SEGMENT

X$ = -4 ; size = 4
_main PROC

push ebp

mov ebp, esp

push ecx

push OFFSET $SG3831 ; 'Enter X:'
call printf

add esp, 4

lea eax, DWORD PTR x$[ebp]
push eax

push OFFSET $5G3832 ; '%d'

call scanf

add esp, 8

mov ecx, DWORD PTR x$[ebp]
push ecx

push OFFSET $SG3833 ; 'You entered %d...'
call printf

add esp, 8
; return 0
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP
_TEXT ENDS

X is a local variable.

67

1.9. SCANF()

According to the C/C++ standard it must be visible only in this function and not from any other external
scope. Traditionally, local variables are stored on the stack. There are probably other ways to allocate
them, but in x86 that is the way it is.

The goal of the instruction following the function prologue, PUSH ECX, is not to save the ECX state (notice
the absence of corresponding POP ECX at the function’s end).

In fact it allocates 4 bytes on the stack for storing the x variable.

X is to be accessed with the assistance of the x$ macro (it equals to -4) and the EBP register pointing
to the current frame.

Over the span of the function’s execution, EBP is pointing to the current stack frame making it possible
to access local variables and function arguments via EBP+offset .

It is also possible to use ESP for the same purpose, although that is not very convenient since it changes

frequently. The value of the EBP could be perceived as a frozen state of the value in ESP at the start of
the function’s execution.

Here is a typical stack frame layout in 32-bit environment:

EBP-8 local variable #2, marked in IDA as var_8

EBP-4 local variable #1, marked in IDA as var 4
EBP saved value of EBP

EBP+4 return address

EBP+8 argument#1, marked in IDA as arg 0

EBP+0xC | argument#2, marked in IDA as arg 4
EBP+0x10 | argument#3, marked in IDA as arg 8

The scanf() function in our example has two arguments.

The first one is a pointer to the string containing %d and the second is the address of the x variable.

First, the x variable’s address is loaded into the EAX register by the
lea eax, DWORD PTR x$[ebp] instruction.

LEA stands for load effective address, and is often used for forming an address (.1.6 on page 1009).

We could say that in this case LEA simply stores the sum of the EBP register value and the x$ macro
in the EAX register.

This is the same as lea eax, [ebp-4].

So, 4 is being subtracted from the EBP register value and the result is loaded in the EAX register. Next
the EAX register value is pushed into the stack and scanf() is being called.

printf() isbeing called afterthat with its first argument — a pointer to the string: You entered %d...\n.

The second argument is prepared with: mov ecx, [ebp-4] . The instruction stores the x variable value
and not its address, in the ECX register.

Next the value in the ECX is stored on the stack and the last printf() is being called.

68

1.9. SCANF()
MSVC + OllyDbg

Let’s try this example in OllyDbg. Let’s load it and keep pressing F8 (step over) until we reach our exe-
cutable file instead of ntdll.dll. Scroll up until main() appears.

Click on the first instruction (PUSH EBP), press F2 (set a breakpoint), then F9 (Run). The breakpoint will
be triggered when main() begins.

Let’s trace to the point where the address of the variable z is calculated:

[E] cPu - main thread, module exi -0l x|

BOESLODE| 5 o5 FUSH EBF i
hegisters \PEU0
BEES1EA1 || - MO EEF,ESFP || nglgggﬁnéng%ﬁ ——]
AR | B Fhen Eee ECH BE44S617 MSUCR1BE.EE445617
BEES16E4 (] - BEIEERER | PUSH OFFSET BEE9ZEEG fo—i EC BETAEELT .
BEES1EA3|] - CALL DWORD PTR D5:C<&MSUCR1e@.printf>] [Lme | Eps BRAREZSS
poEZLDUENL - AOD ESF, 4 ESF BB21FDE4 PTR to ASCII "HII”
BEES1E12|] - LEA EA¥, [LOCAL. 11
e e o i Ef
- C
BEES1A1E|| - CALL OWORD FTR DS:C<&MSUCR1GE.scanf>] |Lpe | EDD BEESS33E eul.BOE9S33S —
BEES1E21] - AO0 ESF, S EIF BEE9101E exl.@EEILALE
BEES1624] - MO EC,DWORD PTR SS:[LOCAL. 11 -
peES1EET | - PUSH ECK o |5 T B2 8558 3507 GiFFeFrrRe)
BOES] G20 PUSH OFFSET BEES2G1A [F-: BB St oeeh aohe ALFFRRERFE
BEES1E20|] - CALL DWORD PTR D5:C<ansUcRiee.printf>] (LSS & B2 GASE 355 .t @iFFFFFFFF)
SOE1assll - 2204 0% HOD ESPLS _ 5 B FS BPE2 22hit FEFODEEEIFFF)
Stack [BEZIFDEBE]=exl.BABE9280H, ASCII "Enter =:@™ 2T 8 &5 882E 37bit BIFFFFEFFF)
EA%=BE31FOB4, PTR to ASCII "HE I =l A
0@ LastErr BEAEAEEA ERROR_SUCCESS

= EFL @e@eszes (wO,HE, HE, A, NS, FE, GE, G -
Address |Hex dump " EE494r 14 FSET MSUCRIBE. _Initeny o
GEETZA00[MS| CE 74 65| /2 2@ 5o OH| OF 00 0O 08 26 o4 oo oo —j oo lFDES [SSE%’;E‘EE | BBES1688 to S
AEED3IE1A| 59 &F 7S 20|65 &6E 74 65 ¥2 &5 &4 28|25 &4 PE Z2E AEE1FORG | BRGAEGR] | A o =l o
BOES3626| 26 BR 08 GB|FF FF FF FF|FF FE FF FF| 80 6o oo op| | BOSIFDCGIraoaeoamal 8 | o ey
- R RN L R
BOESZECH| 06 BE GE 6N G0 B0 B0 BB 08 OF 0 GO 68 68 8 gp| | 99S1FDCC)| 4998E349) 1[FI

BEZ1FO0G| | BREREEGE
BEEI3AG0| PA B9 G0 OF| G0 0A GO 00|00 GO PR OO 69 PG GO B4

BOES3ETH| 0 GO 0O 05| G5 6P R GO0|P0 PO PO 06 0 08 GB GO SSE%EEE; ?EEEEESS -
BOESSHEA| GO OO O OO 0O G0 0O 06|60 0O 0o oo 60 oo oo oo f BOS1FD0S)| FEFDEGSE) o
BEES2A%0| B B8 G0 06| GR 66 BE GO/ 06 GE G 06 68 BE GE 60 1FOD

Figure 1.12: OllyDbg: The address of the local variable is calculated

Right-click the EAX in the registers window and then select “Follow in stack”.

This address will appear in the stack window. The red arrow has been added, pointing to the variable in
the local stack. At that moment this location contains some garbage (0x6E494714). Now with the help
of PUSH instruction the address of this stack element is going to be stored to the same stack on the next

position. Let’s trace with F8 until the scanf() execution completes. During the scanf() execution, we
input, for example, 123, in the console window:

Enter X:
123

69

1.9. SCANF()
scanf() completed its execution already:

C main thread, module ex1 O] x|

BEHES1OEH| FF E5 FIUSH EEF & | Registers (FFPLUI -

aEE2iEE1|] - — | Ef: TEREEEEE1 —

BEESiEes|| .- E ol
BEES 1 BAd BAZAEIRA | PUSH OFFSET GEE92AGH o) EC SEAIZRES Hgﬂgﬁ}gg:fg:g?g?n .

eEF1EE3|| - CALL DWORD PTR DS:[<&MSUCR1e@.printfy»] (Lre | Epd BER-RE00

BEES1EEF]] - ROD ESF, 4 rrus ger
" ESF BA31FOAC FTR to ASCII "xd
BEES1E1Z2]] - LER EAX, [LOCAL. 1] EEF GGZ1FDES

beEainie|| s éa BCSAEIAA PloH GFESET @RES3E6C [é" ESI Bagaoedl
[

@ £l - CALL DWORD FTR D%:[<&MSUCR18G.scanf>] |Lps | EDT BOESS393 exl.@EES3322 —

A |- AOD ESF, & EIF BPES1021 exi.BHBEI1621

BEES1 B4 MOL EC, OWORD PTR S5z [LOCAL. 11 -

: . |ce Es eese 2zbitc BIFFFFFFFF)
BEEILEZ7)| - PLISH ECx % |F @ CS @23 22hit BIFFFFFFFF]
BEES1Bza|| - FUSH OFFSET BEESSE1@ fo ln B iZ B5°E 2°hit &(FFFFFFEF)
BEES16z0|| - CALL OWORD PTR DF:C<amsvcRiea.printf»] (Lns o 0 52 G058 Son it GiEFFFREER)
Qoo gssl] . HOD ESF,2 S8 F5 @E5S 3%hit rEFOOEEELFFF)
?SUCEWE"-EDEHF returned EAX = 1 allT @ &5 8B2E 22bit BIFFFFFFFF)
mm= LLL} LL b D a
ESP=BB21FDAC, PTR to ASCID ™ad 0 8 LastErr GEAGE055 ERROR_SUCCESS

- | EFL emeEzEz (MO, ME,ME, A, MS, PO, GE, &) -

Address |Hex dump = ~GRESHEEC| FEy | ASCLI Tad” -

BEZ1FOED| | BE31FDE) =1 —
BEESZEEEE4S] 6E ¥4 65|72 28 55 SH|EA B0 8O BE| 25 &4 B8 oA
mEels o E e e Lo o el O o ol | senened | sudieeee
BEES2636| FE FF FF FF|G1 BB B@ @8BS 4E A1 4940 B1 SE Be| | 99S1FDEC) LBBESL1AD vl BEEILOEE to

BE31FOCE| roeasaaa] | 6
BEESZA4P| Bl BB B0 DB 43 22 49 90|62 4E 49 08| 60 PG 69 B8 S

BEES3050| 65 GO 0O 06 HE 00 00 66 00 00 09 06|00 B oo po| | 2ES1FOGA)| B4RAELe) Al | RSCIT TRHI

BEES3055| B0 B 0B 65|90 DA 08 05|80 0O 0 05|60 6o o op| | BASIFDLE)| 0A42E848 HIT

BaEaibun| 65 BA b6 6 65 bo 56 66 05 b4 o b 65 b6 o Ab|f 2ESiFO0S|| eodensad =
BRES3696| AR BE GE GR) G6 GR GR 66|60 A0 A6 66 66 66 66 ael) 99S1F004) | Baa0aa50 bl

Figure 1.13: OllyDbg: scanf() executed

scanf() returns 1 in EAX, which implies that it has read successfully one value. If we look again at the
stack element corresponding to the local variable it now contains 0x7B (123).

70

1.9. SCANF()
Later this value is copied from the stack to the ECX register and passed to printf() :

[E cPu - main thread, module ex1 - 10| x|

BOESLOER| 5 BE FUZH_EEF i
GoEaioni || - 3BEC MOU EEP, ESP AjfReaisters [FRU =
eeEalaEz|| - E1 FUSH ECH B DRAAHETE
ooE2ioa4|| « &5 pEZEE9RA | PUSH OFFSET BMEE9S@EE ol e e MSUCR1GE. badioinfo
GeEsioes|| - FFIE SCEBESE CALL DWORD PTR DS: [<&MSUCR1BE.printf>] (Lms | Soh So020-0d —
eeEa1meF || - ADD ESP, 4 Eob GneiFoEa
eeEa1m1z|] - LER EAX, [LOCAL.11 e
bacatate|| - PUSH GRPSET meES3@aC [E; E3l pomapaal
L=
BEES1G1E|| - CALL DWORD FTR DS:[<&MSUCR1G@.scanf>] |Lpg | EDL B9EZ3392 exl.BEESSS5S —
eEEa1E21|] - ADD ESP, 2 EIF BHE91627 =ul.BBE91827F
all - MOU ECH.DWORD PTR S5:[LOCAL. 1] . Es @92B 37bit @(FFFEFFFF)
: EHEH EEﬁSET AEE9S61 8 E" F 1 CS 8823 32bit B0FFFFFFFF)
: . © lp 1 55 68%E 3Zbit GCFFFFFFFF)
BEES1820 CALL DWORD PTR DS: L<snsvcriea.prinsf>] (Loi oY 5 02 0558 25010 OiFFFEEree)
gfgzéa?gaa1FDBB]—BBSIFDB4 BOD ESF,2 S8 FS5 BESS S2bit FEFODBEELFFF)
ECH=BRABAGATE {decimal 123.) 2T B G5 888 Szbiv GIFFFFFFRFR)
0 8 LastErr PAGAGEGE ERROR_SUCCESS
= || EFL @@emezie (Mo, HE,HE,A,HS, PE, GE, &) -
Address |Hex dump - HEHEEE B -
HOESo0E (46 6E 74 65 72 28 5@ OH| OR 08 OF 0625 64 oo oaf—f oo 1FOES [SSE%E?E% c 1. BAES1EBA to i
BEESR1A(ES EF 75 28 65 GE v4 BE| 72 65 64 20|25 &4 2B DE[T ZESIFEE.| BIEEI LA rer S vo
GEE33020| 2E BA @@ @A FF FF FF FF|FF FF FF FF| B0 @@ @@ e | 2321F0CE)raaaanaal QECTT
BEE23030| FE FF FF FF @1 ©0 90 8@ BS 4E AL 43| 4R B1 SE Be| | 2321FCLA|| BB424EC8 P
BEES3646(01 BB 0O 68| 43 25 49 68|63 4E 49 ob| oo oo oo oo | 2BS1FOCE) | BE4CC04S
BEES36SH(00 BB GO GO 00 6O 00 65 00 68 0O 66| 00 o oo oa | 2BSIFOCE) | 4959854
BEES3AEH(0 BE GO BE| 6O 6O 0O 65 00 BB 06 66 00 6@ oo oo | 29S1FO0E) | BERAE0EE
seomzmnEeznanaeeenn o 7
BOES2090| PR AR G0 DO GRG0 00 0R PR 0O 00 BE|GR Gn oo ool @9S1FO0C) | Bacaaacs h

Figure 1.14: OllyDbg: preparing the value for passing to printf()

GCC

Let’s try to compile this code in GCC 4.4.1 under Linux:

main proc near

var_20 dword ptr -20h

var_1C = dword ptr -1Ch

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_20], offset aEnterX ; "Enter X:"
call _puts
mov eax, offset aD ; "%d"
lea edx, [esp+20h+var 4]
mov [esp+20h+var 1C], edx
mov [esp+20h+var _20], eax
call ___1s0c99 scanf
mov edx, [esp+20h+var 4]
mov eax, offset aYouEnteredD ; "You entered %d...\n"
mov [esp+20h+var_1C], edx
mov [esp+20h+var 20], eax
call _printf
mov eax, 0
leave
retn

main endp

GCC replaced the printf() call with call to puts() . The reason for this was explained in (1.5.4 on
page 21).

As in the MSVC example—the arguments are placed on the stack using the MOV instruction.

71

1.9. SCANF()
By the way

By the way, this simple example is a demonstration of the fact that compiler translates list of expressions
in C/C++-block into sequential list of instructions. There are nothing between expressions in C/C++, and
so in resulting machine code, there are nothing between, control flow slips from one expression to the
next one.

x64

The picture here is similar with the difference that the registers, rather than the stack, are used for argu-
ments passing.

MSVC

Listing 1.67: MSVC 2012 x64

_DATA SEGMENT

$5G1289 DB 'Enter X:', 0OaH, OOH
$5G1291 DB '%d', OOH
$5G1292 DB 'You entered %d...', 0OaH, OOH
_DATA ENDS
_TEXT SEGMENT
x$ = 32
main PROC
$LN3:
sub rsp, 56
lea rcx, OFFSET FLAT:$SG1289 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1291 ; '%d'
call scanf
mov edx, DWORD PTR x$[rspl
lea rcx, OFFSET FLAT:$SG1292 ; 'You entered %d...'
call printf
; return 0
xor eax, eax
add rsp, 56
ret 0
main ENDP
_TEXT ENDS

GCC
Listing 1.68: Optimizing GCC 4.4.6 x64
.LCO:
.string "Enter X:"
.LC1:
.string "%d"
.LC2:
.string "You entered %d...\n"
main:
sub rsp, 24
mov edi, OFFSET FLAT:.LCO ; "Enter X:"
call puts
lea rsi, [rsp+12]
mov edi, OFFSET FLAT:.LC1l ; "%d"
xor eax, eax
call __1s0c99 scanf
mov esi, DWORD PTR [rsp+12]

72

LCoNOOULA WNE

1.9. SCANF()

mov edi, OFFSET FLAT:.LC2 ; "You entered %d...\n"
xor eax, eax
call printf

; return 0

xor eax, eax
add rsp, 24
ret

ARM

Optimizing Keil 6/2013 (Thumb mode)

.text:00000042 scanf_main

.text:00000042

.text:00000042 var_8 = -8

.text:00000042

.text:00000042 08 B5 PUSH {R3,LR}

.text:00000044 A9 A0 ADR RO, aEnterX ; "Enter X:\n"
.text:00000046 06 FO D3 F8 BL _ 2printf

.text:0000004A 69 46 MoV R1, SP

.text:0000004C AA A0 ADR RO, aD ; "%d"
.text:0000004E 06 FO CD F8 BL __Oscanf

.text:00000052 00 99 LDR R1, [SP,#8+var 8]
.text:00000054 A9 A0 ADR RO, aYouEnteredD ; "You entered %d...\n"
.text: 00000056 06 FO CB F8 BL _ 2printf

.text:0000005A 00 20 MOVS RO, #0

.text:0000005C 08 BD POP {R3,PC}

In order for scanf() to be able to read item it needs a parameter—pointer to an int. int is 32-bit, so we
need 4 bytes to store it somewhere in memory, and it fits exactly in a 32-bit register. A place for the local
variable x is allocated in the stack and IDA has named it var_8. It is not necessary, however, to allocate
a such since SP (stack pointer) is already pointing to that space and it can be used directly.

So, SP’s value is copied to the R1 register and, together with the format-string, passed to scanf() .
Later, with the help of the LDR instruction, this value is moved from the stack to the R1 registerin order
to be passed to printf() .

ARM64
Listing 1.69: Non-optimizing GCC 4.9.1 ARM64
.LCO:
.string "Enter X:"
.LC1:
.string "%d"
.LC2:
.string "You entered %d...\n"
scanf _main:
; subtract 32 from SP, then save FP and LR in stack frame:
stp x29, x30, [sp, -32]!
; set stack frame (FP=SP)
add x29, sp, 0

; load pointer to the "Enter X:" string:
adrp x0, .LCO

add x0, x0, :1o0l12:.LCO
; X0=pointer to the "Enter X:" string
; print it:

bl puts

; load pointer to the "%d" string:
adrp x0, .LC1

add x0, x0, :lol2:.LC1
; find a space in stack frame for "x" variable (X1=FP+28):
add x1, x29, 28

73

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

1.9. SCANF()

; Xl=address of "x" variable

; pass the address to scanf() and call it:
bl __1s0c99 scanf

; load 32-bit value from the variable in stack frame:
ldr wl, [x29,28]

; Wl=x

; lLoad pointer to the "You entered %d...\n" string

; printf() will take text string from X0 and "x" variable from X1 (or W1)
adrp x0, .LC2

add x0, x0, :10l2:.LC2
bl printf
; return 0
mov wO, 0
; restore FP and LR, then add 32 to SP:
1dp x29, x30, [sp], 32
ret

There is 32 bytes are allocated for stack frame, which is bigger than it needed. Perhaps some memory
aligning issue? The most interesting part is finding space for the z variable in the stack frame (line 22).
Why 28?7 Somehow, compiler decided to place this variable at the end of stack frame instead of beginning.

The address is passed to scanf () , which just stores the user input value in the memory at that address.
This is 32-bit value of type int. The value is fetched at line 27 and then passed to printf() .

MIPS

A place in the local stack is allocated for the x variable, and it is to be referred as $sp + 24.

Its address is passed to scanf() , and the user input values is loaded using the LW (“Load Word”) in-
struction and then passed to printf() .

Listing 1.70: Optimizing GCC 4.4.5 (assembly output)

$LCO:
.ascii "Enter X:\000"
$LCI1:
.ascii "%d\00o"
$LC2:
.ascii "You entered %d...\012\000"
main:
; function prologue:
lui $28,%hi(__gnu local gp)
addiu $sp, $sp, -40
addiu $28,%$28,%1lo(_gnu local gp)
sw $31,36($sp)
; call puts():
lw $25,%calll6(puts) ($28)
lui $4,%hi($LCO)
jalr $25

addiu $4,%$4,%lo($LCO) ; branch delay slot
; call scanf():

w $28,16($sp)
lui $4,%hi($LC1)
w $25,%callle(isoc99 scanf) ($28)

; set 2nd argument of scanf(), $al=$sp+24:
addiu $5,%$sp, 24
jalr $25
addiu $4,%$4,%1lo($LC1l) ; branch delay slot

; call printf():

lw $28,16($sp)
; set 2nd argument of printf(),
; load word at address $sp+24:

lw $5,24($sp)

lw $25,%callle(printf) ($28)
lui $4,%hi($LC2)

jalr $25

addiu $4,%$4,%lo($LC2) ; branch delay slot

74

1.9. SCANF()

; function epilogue:
w $31,36(%sp)
; set return value to 0:
move $2,%0
; return:
j $31
addiu $sp,$sp,40 ; branch delay slot

IDA displays the stack layout as follows:
Listing 1.71: Optimizing GCC 4.4.5 (IDA)

.text:00000000 main:
.text:00000000

.text:00000000 var 18 = -0x18

.text:00000000 var 10 = -0x10

.text:00000000 var 4 = -4

.text: 00000000

; function prologue:

.text:00000000 lui $gp, (__gnu local gp >> 16)
.text: 00000004 addiu $sp, -0x28

.text:00000008 la $agp, (__gnu local gp & OXFFFF)
.text:0000000C sw $ra, 0x28+var 4($sp)
.text:00000010 sw $gp, 0x28+var 18($sp)

; call puts():

.text:00000014 lw $t9, (puts & OXFFFF) ($gp)
.text:00000018 lui $a0, ($LCO >> 16) # "Enter X:"
.text:0000001C jalr $t9

.text:00000020 la $a0, ($LCO & OxFFFF) # "Enter X:" ; branch delay slot
; call scanf():

.text:00000024 lw $gp, 0x28+var 18($sp)
.text:00000028 lui $a0, ($LC1 >> 16) # "%d"
.text:0000002C lw $t9, (__isoc99 scanf & OxFFFF) ($gp)
; set 2nd argument of scanf(), $al=$sp+24:

.text:00000030 addiu $al, $sp, 0x28+var 10

.text: 00000034 jalr $t9 ; branch delay slot
.text:00000038 la $a0, ($LC1 & OXFFFF) # "%d"

; call printf():

.text:0000003C lw $gp, Ox28+var 18($sp)

; set 2nd argument of printf(),
; load word at address $sp+24:

.text:00000040 lw $al, O0x28+var 10($sp)

.text:00000044 lw $t9, (printf & OxFFFF) ($gp)

.text:00000048 lui $a0, ($LC2 >> 16) # "You entered %d...\n"

.text:0000004C jalr $t9

.text:00000050 la $a0, ($LC2 & OxFFFF) # "You entered %d...\n" ; branch delay v
& slot

; function epilogue:

.text:00000054 lw $ra, Ox28+var_4($sp)

; set return value to O:

.text:00000058 move $v0, $zero

; return:

.text:0000005C jr $ra

.text:00000060 addiu $sp, 0x28 ; branch delay slot

1.9.2 Popular mistake

It’s a very popular mistake (and/or typo) to pass value of x instead of pointer to x:

#include <stdio.h>
int main()
{
int x;
printf ("Enter X:\n");

scanf ("%d", x); // BUG

75

1.9. SCANF()

printf ("You entered %d...\n", Xx);

return 0;

i

So what happens here? x is not uninitialized and contains some random noise from local stack. When
scanf () called, it takes string from user, parses it into number and tries to write it into x, treating it as

an address in memory. But there is a random noise, so scanf () will try to write at random address. Most
likely, the process will crash.

Interestingly enough, some CRT libraries in debug build, put visually distinctive patterns into memory just
allocated, like OXCCCCCCCC or 0xOBADFOOD and so on. In this case, x may contain OxCCCCCCCC, and
scanf () would try to write at address OxCCCCCCCC. And if you’ll notice that something in your process
tries to write at address OXxCCCCCCCC, you'll know that uninitialized variable (or pointer) gets used without
prior initialization. This is better than as if newly allocated memory is just cleared.

1.9.3 Global variables

What if the x variable from the previous example isn’t local but a global one? Then it would have been
accessible from any point, not only from the function body. Global variables are considered anti-pattern,
but for the sake of the experiment, we could do this.

#include <stdio.h>

// now x is global variable

int x;
int main()
{
printf ("Enter X:\n");
scanf ("%d", &x);
printf ("You entered %d...\n", x);
return 0;
I
MSVC: x86
_DATA SEGMENT
COMM x:DWORD
$5G2456 DB '"Enter X:', 0aH, OOH
$5G2457 DB '%d', O0H
$5G2458 DB 'You entered %d...', 0OaH, OOH
_DATA ENDS
PUBLIC ~main
EXTRN _scanf:PROC
EXTRN _printf:PROC

; Function compile flags: /0dtp
_TEXT SEGMENT

_main PROC
push ebp
mov ebp, esp

push OFFSET $5G2456
call printf

add esp, 4

push OFFSET x

push OFFSET $5G2457
call scanf

add esp, 8

mov eax, DWORD PTR x
push eax

push OFFSET $5G2458

76

1.9. SCANF()
call printf

add esp, 8
xor eax, eax
pop ebp
ret 0
_main ENDP
_TEXT ENDS

In this case the x variable is defined in the DATA segment and no memory is allocated in the local

stack. It is accessed directly, not through the stack. Uninitialized global variables take no space in the
executable file (indeed, why one needs to allocate space for variables initially set to zero?), but when
someone accesses their address, the OS will allocate a block of zeros there’?.

Now let’s explicitly assign a value to the variable:

int x=10; // default value

We got:
_DATA SEGMENT
X DD OaH

Here we see a value 0xA of DWORD type (DD stands for DWORD = 32 bit) for this variable.

If you open the compiled .exe in IDA, you can see the x variable placed at the beginning of the DATA
segment, and after it you can see text strings.

If you open the compiled .exe from the previous example in IDA, where the value of x hasn’t been set, you
would see something like this:

Listing 1.72: IDA

.data:0040FA80 x dd ? ; DATA XREF: main+10
.data:0040FA80 _main+22

.data:0040FA84 dword 40FA84 dd ? DATA XREF: memset+1E
.data:0040FA84 unknown libname 1+28
.data:0040FA88 dword 40FA88 dd ? DATA XREF: sbh find block+5
.data:0040FA88 ____sbh _free block+2BC
.data:0040FA8C ; LPVOID lpMem

.data:0040FA8C 1pMem dd ? ; DATA XREF: sbh find block+B
.data:0040FA8C ____sbh _free block+2CA
.data:0040FA90 dword 40FA90 dd ? DATA XREF: V6 HeapAlloc+13
.data:0040FA90 ~_calloc_impl+72
.data:0040FA94 dword 40FA94 dd ? DATA XREF: sbh free block+2FE

_X is marked with ? with the rest of the variables that do not need to be initialized. This implies that

after loading the .exe to the memory, a space for all these variables is to be allocated and filled with zeros
[ISO/IEC 9899:TC3 (C C99 standard), (2007)6.7.8p10]. But in the .exe file these uninitialized variables do
not occupy anything. This is convenient for large arrays, for example.

72That is how a VM behaves

77

1.9. SCANF()
MSVC: x86 + OllyDbg

Things are even simpler here:

[E cru - main thread, module ex2 -0 x|

SSEE%SS? r¥ &5 EHEHEEEP a || Registers (FFUI -
gecs1aas|| - Gezocsan | PUSH OFFSET oacsaose e vt

wacs1ens| | - CALL DWORD PTR DS: [<&MSUCR1GA. printf>] |Lme—d ECn SEX4EHRE HZLLR199. EEG4SHAG
BBC51epE| | - ADD ESP, 4 EBv BEaaoEE —

gacsieil)| - 94330500 | PUSH OFFSET BaC53394 % e ———

gacsieie| - BLIOCton | PUSH OFFSET BBCSZ0E [F-: ST :

gacsiaie|] - FACL DWORD PTR Dot [<AMSUCR 108, scanf3] | LIk e

. AOD ESF, 2
BeCETEzgf| - A1 S433CEAR | MOU ERi, DUORD PTR 05: (BCS3334] EDT BACESSE0 exd. BACEI250 -
Becs1ez3|| - PUSH E < |EIP BBCS1821 enz.oBCS1DE1
gecs1ezA|| - 1ezaccon |PUSH GFRSET pecssote [Fn: :
BaCE1azF || - CALL OWORD PTR DS:[<&MSUCR1GE.printf>] Lmg |5 9 EZ B2<E Z2biv BIFFFFEFER)
pacstazel] OeR ESReEL. A @ S5 GBZE 3Zbit @(FFFFFFFF)
paCsiacE HOR ERE, vz & D0S 8826 33bit BIFFFFFFFF)
£ S B FS @853 32bit rEFODBEELFFF)
MeVLh1aa. soanf returned EAR = 1 «flT 3 G55 9826 32bit @IFFFFFFFF)
mn= rre LL b D a
ESP=@B44F74C, FTR to ASCII "id 08 LastErr GEREREEE ERROR_SUCCESS
v | EFL eeeezee (MO, ME,NE,A, NS, FE, GE, G) -

E— - BOCE SO0
EEREEEE Bz OO B9 OB DO 69 00 B9 9F 90 99 SE|f 8 Do44brse | Bacesavd
BBCE S o4 BE DD GO 0D DO BB DD B6| 0D B0 BB DO A3W; Frapieen] ety
BECESSE4 BO DR PO DR GO BB DR BO| 0D BE OB B 4 TEo| rgRce Lias
BBCESoC4 BE OB PO BB DO BE DR BE| 6D 5O BE OE ooaamal
BBCESS04 BO 0O GO 0D OO BB 0N BB| 0D 5O BB GO Daladtes
BBCESEE 4 BG DR BB BB DD BB DR AB| 0B BB BB DO galacads
BBCEZEF 4 BE 0D GG 0D DO BB 0D B6| 0D GO BB GO EeERoLED
BarEi4id BG 56 6 oB|ba o5 o Ho|ba G 6o BY 28020800
BECEZ4z4 R I e I I Ba-rrrd]| FEFDERES

Figure 1.15: OllyDbg: after scanf() execution

The variable is located in the data segment. After the PUSH instruction (pushing the address of z) gets
executed, the address appears in the stack window. Right-click on that row and select “Follow in dump”.
The variable will appear in the memory window on the left. After we have entered 123 in the console,

0x7B appears in the memory window (see the highlighted screenshot regions).

But why is the first byte 7B ? Thinking logically, 00 00 00 7B must be there. The cause for this is
referred as endianness, and x86 uses little-endian. This implies that the lowest byte is written first, and
the highest written last. Read more about it at: 2.7 on page 463. Back to the example, the 32-bit value is

loaded from this memory address into EAX and passed to printf() .

The memory address of z is Ox00C53394 .

78

1.9. SCANF()
In OllyDbg we can review the process memory map (Alt-M) and we can see that this address is inside the
.data PE-segment of our program:

X1 Memory map - 10| x|
Addiess |Size Owner Section |Contains Tupe|Access | Initial|Mapped as AI
HEETEEAN | BEDES 7 EHE Map |R 3 Cz~Windows~Sustem3z~ lozale.n s
BEA1 93888 | ARREREREE Heap FPriv| Bl Rl

BHZE98EE | HEHEFEEE Priw| BW Gua) Bl Gua

BE44CHEA8 | BEEE 1 388 Priv| Bl Gua) Bl Gua

BE440888 | BEREIEEE Stack of main thread |Priv|REW Rl

BRS9EEAA | BEDETEEE Priw| Bl Rl

BAFEAEAR | ARRECEAEE Default heap Priw| Bl Rl

BEHCEEEAE | HEHE 1888 | en 2 FE header Ima |R RWE Cop

BACE 1888 | 0081888 | ex 2 L tent Code Ima |R E RWE Cop

BECEZ2EE0 | BE0E 1006 | ex2 . rdata Imports Ima |R RWE Cop

BACE3EAA | BERE]1BEE | ex 2 .data Data Ima | Bl RWE Cop

HECE4EAN | BERE 1 EEE | ex2 e loc Relozat ions Ima |R EWE Cop

SESEBBAD | BEEE 1888 | MSUCR 188 FE header Ima |R EWE Cop

cEZE1806| BEAEZ2E688 | MSUCR186 Ctenrt Code, imports,exports | Img |[R E RWE Cop

SE4923808 | DonEsEaad| MSUCR 188 .data Data Ima |EW Copt BWE Cop

SE499880 | BA0E 1A0E | MSUCE 186 CELC Resources Ima |R EWE Cop

SE49REAN | BERESEEE | MSUCE 186 e loc Relocat ions Ima |R EWE Cop

FEEDEEAE | BEEE 1888 | Mod_vEED FE header Ima R EWE Cop

FEE01888 | AOEE3888 Ima |R E RWE Cop

TEE04888 | QE0E 1888 Ima | Rl EWE Cop

TSE05888 | BERE3EEE Ima |R EWE Cop

TEEEBRBAR | BEEA1B8A | Mod_FEEE FE header Ima R EWE Cop

vEEE1888 | BER408E8 Ima |R E EWE Cop

TEE2EBAR | BOREEAEE Img |EW Copt BWE Cop

TEEI3E88 | DEDEIEEaE8 Ima |R EWE Cop

TSE4E8A8 | BEEE 1888 | Mod_v5&4 FE header Img R REWE Cop

TEE4 1880 | ARRSSEEE Ima |R E EWE Cop

FEEFIHAR | AEREZEEE Ima | Rl EWE Caop

TEEFESAR | BO0E4888 Ima |R EWE Cop

TEFEEEA0| BE01800E | kerne 132 PE header Ima |R EWE Cop

TEFEEEAD | BEODEEEE | kerne 132 hEHE Code, imports,edports [Ima (R E REWE Cop

TrEZEEAN | BAR1BEEE | kerne |32 .data Dat a Img |EW Copt EWE Cop

FrAdEEan | BAR1BEEE | kerne 132 e Rezsources Ima |R EWE Caop

T rAEEEAH | BERNEEEEE | kerne 132 reloc Relocat ions Ima |R EWE Cop

Trelesaas oooelesad| KERHELERSE FE header Ima |R EWE Cop

rraliBan) Ba048008 | KERHELEBASE | . text Code, imports,edports [Ima (R E REWE Cop

Fre5l1eas | iEnE2E888 | KERMELBRSE | .data Data Ima | Rl EWE Cop

T rE538A0| BARE 1 A0EE | KERMELEBASE | . rsrc Rezsources Ima |R EWE Caop

Trot4868 | ooaE3888| KERHELBRASE | .reloc Relocat ions Ima |R RWE Cop |-
TrE2B8868 | BE0El88d| Mod_vrEZ FE header Imna (R EWE Cop

TrE21888| BalB2888 Ima |R E REWE Cop

FrC22880 | AER2FEaEa Ima |R EWE Cop

FrCEZ2888 | ARRECEEE Ima |EW Copt BWE Cop

TrCEEBAR | BRREEREE Ima |R EWE Cop

FrO888a8 | AEEE 1888 [ntdl L FE header Ima |R RWE Cop

rrOlE8a0 BEE0GEEE | ntdl L . hEHE Code,edports Ima R E REWE Cop

TrOFEEaa | BEnE1E8EE | ntdl L RT Code Ima |R E EWE Cop

77ERROAE| GRARGORE | ntdl | .data |Oata Ina |RW_ Copd RUE Cop hd

Figure 1.16: OllyDbg: process memory map

GCC: x86

The picture in Linux is near the same, with the difference that the uninitialized variables are located in
the bss segment. In ELF file this segment has the following attributes:

; Segment type: Uninitialized
; Segment permissions: Read/Write

If you, however, initialize the variable with some value e.g. 10, it is to be placed in the _data segment,
which has the following attributes:

; Segment type: Pure data
; Segment permissions: Read/Write

MSVC: x64

Listing 1.73: MSVC 2012 x64

_DATA SEGMENT
COMM x :DWORD

$5G2924 DB '"Enter X:', 0aH, OOH

$5G2925 DB '%d', OOH

$5G2926 DB 'You entered %d...', OaH, OOH
_DATA ENDS

79

1.9. SCANF()

_TEXT SEGMENT
main PROC
$LN3:
sub rsp, 40
lea rcx, OFFSET FLAT:$5G2924 ; 'Enter X:'
call printf
lea rdx, OFFSET FLAT:x
lea rcx, OFFSET FLAT:$S5G2925 ; '%d'
call scanf
mov edx, DWORD PTR x
lea rcx, OFFSET FLAT:$5G2926 ; 'You entered %d...'
call printf
; return 0
xor eax, eax
add rsp, 40
ret 0
main ENDP
_TEXT ENDS

The code is almost the same as in x86. Please note that the address of the z variable is passed to

scanf() using a LEA instruction, while the variable’s value is passed to the second printf() using

a MOV instruction. DWORD PTR —is a part of the assembly language (no relation to the machine code),
indicating that the variable data size is 32-bit and the MOV instruction has to be encoded accordingly.

ARM: Optimizing Keil 6/2013 (Thumb mode)

Listing 1.74: IDA

.text:00000000 ; Segment type: Pure code

.text: 00000000 AREA .text, CODE

.text:00000000 main

.text: 00000000 PUSH {R4, LR}

.text:00000002 ADR RO, aEnterX ; "Enter X:\n"
.text:00000004 BL __2printf

.text:00000008 LDR R1, =x

.text:0000000A ADR RO, aD ;o "%d”
.text:0000000C BL __Oscanf

.text:00000010 LDR RO, =x

.text:00000012 LDR R1, [RO]

.text:00000014 ADR RO, aYouEnteredD ; "You entered %d...\n"
.text:00000016 BL __2printf

.text:0000001A MOVS RO, #0

.text:0000001C POP {R4,PC}

.text:00000020 aEnterX DCB "Enter X:",0xA,0 ; DATA XREF: main+2
.text:0000002A DCB 0

.text:0000002B DCB 0

.text:0000002C off 2C DCD x ; DATA XREF: main+8
.text:0000002C ; main+10

.text: 00000030 aD DCB "%d",0 ; DATA XREF: main+A
.text:00000033 DCB 0

.text:00000034 aYouEnteredD DCB "You entered %d...",0xA,0 ; DATA XREF: main+14
.text:00000047 DCB 0

.text:00000047 ; .text ends

.text:00000047

.data: 00000048 ; Segment type: Pure data

.data:00000048 AREA .data, DATA

.data:00000048 ; ORG 0x48

.data:00000048 EXPORT x

.data:00000048 x DCD OxA ; DATA XREF: main+8
.data:00000048 ; main+10

.data: 00000048 ; .data ends

80

LCoNOOULA,WNE

1.9. SCANF()

So, the x variable is now global and for this reason located in another segment, namely the data segment
(.data). One could ask, why are the text strings located in the code segment (.text) and x is located right
here? Because it is a variable and by definition its value could change. Moreover it could possibly change
often. While text strings has constant type, they will not be changed, so they are located in the .text
segment.

The code segment might sometimes be located in a ROM’3 chip (keep in mind, we now deal with embedded
microelectronics, and memory scarcity is common here), and changeable variables —in RAM’4,

It is not very economical to store constant variables in RAM when you have ROM.

Furthermore, constant variables in RAM must be initialized, because after powering on, the RAM, obviously,
contains random information.

Moving forward, we see a pointerto the x (off 2C) variable in the code segment, and that all operations
with the variable occur via this pointer.

That is because the x variable could be located somewhere far from this particular code fragment, so its
address must be saved somewhere in close proximity to the code.

The LDR instruction in Thumb mode can only address variables in a range of 1020 bytes from its location,
and in in ARM-mode —variables in range of +4095 bytes.

And so the address of the x variable must be located somewhere in close proximity, because there is
no guarantee that the linker would be able to accommodate the variable somewhere nearby the code, it
may well be even in an external memory chip!

One more thing: if a variable is declared as const, the Keil compiler allocates it in the .constdata
segment.

Perhaps thereafter, the linker could place this segment in ROM too, along with the code segment.

ARM64

Listing 1.75: Non-optimizing GCC 4.9.1 ARM64

.comm x,4,4

.LCO:

.string "Enter X:"
.LC1:

.string "sd"
.LC2:

.string "You entered %d...\n"
f5:
; save FP and LR in stack frame:

stp x29, x30, [sp, -16]!
; set stack frame (FP=SP)

add x29, sp, ©

; load pointer to the "Enter X:" string:
adrp x0, .LCO
add x0, x0, :lol2:.LCO
bl puts
; load pointer to the "%d" string:
adrp x0, .LC1

add x0, x0, :lol2:.LC1
; form address of x global variable:
adrp x1l, x
add x1l, x1, :1lol2:x
bl __1s0c99 scanf

; form address of x global variable again:
adrp x0, X

add x0, x0, :1ol2:x
; load value from memory at this address:
ldr wl, [x0]

; load pointer to the "You entered %d...\n" string:
adrp x0, .LC2
add x0, x0, :lol2:.LC2

73Read-only memory
74Random-access memory

81

32
33
34
35
36
37

1.9. SCANF()

bl printf
; return 0
mov woO, 0
; restore FP and LR:
ldp x29, x30, [sp], 16
ret

In this case the z variable is declared as global and its address is calculated using the ADRP / ADD instruc-
tion pair (lines 21 and 25).

MIPS

Uninitialized global variable

So now the z variable is global. Let’'s compile to executable file rather than object file and load it into IDA.

IDA displays the = variable in the .sbss ELF section (remember the “Global Pointer”? 1.5.5 on page 25),
since the variable is not initialized at the start.

Listing 1.76: Optimizing GCC 4.4.5 (IDA)

. text:004006C0 main:
. text:004006C0

.text:004006C0 var 10 = -0x10

.text:004006C0 var_ 4 = -4

.text:004006C0

; function prologue:

.text:004006C0 lui $gp, 0x42

.text:004006C4 addiu $sp, -0x20

.text:004006C8 1i $gp, 0x418940

.text:004006CC sw $ra, 0x20+var _4($sp)

.text:004006D0 sw $gp, Ox20+var 10($sp)

; call puts():

.text:004006D4 la $t9, puts

.text:004006D8 lui $a0, 0x40

.text:004006DC jalr $t9 ; puts

.text:004006E0 la $a0, aEnterX # "Enter X:" ; branch delay slot

; call scanf():

.text:004006E4 1w $gp, 0x20+var 10($sp)

.text:004006E8 lui $a0, 0x40

.text:004006EC la $t9, isoc99 scanf

; prepare address of x:

.text:004006F0 la $al, x

.text:004006F4 jalr $t9 ; isoc99 scanf

.text:004006F8 la $a0, aD # "%d" ; branch delay slot

; call printf():

.text:004006FC w $gp, Ox20+var 10($sp)

.text:00400700 lui $a0, 0x40

; get address of x:

.text:00400704 la $v0O, X

.text:00400708 la $t9, printf

; load value from "x" variable and pass it to printf() in $al:

.text:0040070C lw $al, (x - 0x41099C) ($vO)

.text:00400710 jalr $t9 ; printf

.text:00400714 la $a0, aYouEnteredD # "You entered %d...\n" ; branch v
_, delay slot

; function epilogue:

.text:00400718 lw $ra, 0x20+var 4($sp)

.text:0040071C move $v0, $zero

.text:00400720 jr $ra

.text:00400724 addiu $sp, 0x20 ; branch delay slot

.Sbss:0041099C # Segment type: Uninitialized

.Sbss:0041099C .sbss
.Sbss:0041099C .globl x
.Sbss:0041099C x: .space 4

82

1.9. SCANF()
.Sbss:0041099C

IDA reduces the amount of information, so we’ll also do a listing using objdump and comment it:

Listing 1.77: Optimizing GCC 4.4.5 (objdump)

004006¢c0 <main>:
; function prologue:

Lo~NOOUTA, WN =

4006¢0: 3clc0042 lui gp,0x42

4006c4: 27bdffe0 addiu sp,sp,-32

4006c8: 279c8940 addiu gp,gp, -30400

4006¢cC: afbf001lc sw ra,28(sp)

4006d0: afbc0010 sw gp,16(sp)
; call puts():

4006d4: 81998034 lw t9,-32716(gp)

4006d8: 3c040040 lui a0, 0x40

4006dc: 03201809 jalr t9

4006€0: 248408f0 addiu a0,a0,2288 ; branch delay slot
; call scanf():

4006e4: 8fbc0010 lw gp,16(sp)

4006e8: 3c040040 lui a0, 0x40

4006ec: 81998038 lw t9,-32712(gp)
; prepare address of x:

4006T0: 81858044 lw al, -32700(gp)

4006f4: 03201809 jalr t9

4006f8: 248408fc addiu a0,a0,2300 ; branch delay slot
; call printf():

4006fc: 8fbc0010 lw gp,16(sp)

400700: 3c040040 lui a0, 0x40
; get address of x:

400704: 81828044 lw v0,-32700(gp)

400708: 8199803c lw t9,-32708(gp)
; load value from "x" variable and pass it to printf() in $al:

40070c: 8c450000 lw al,o(vo)

400710: 03201809 jalr t9

400714: 24840900 addiu a0,a0,2304 ; branch delay slot
; function epilogue:

400718: 8fbf001c lw ra,28(sp)

40071c: 00001021 move v0O, zero

400720: 03e00008 jr ra

400724: 27bd0020 addiu sp,sp,32 ; branch delay slot
; pack of NOPs used for aligning next function start on 16-byte boundary:

400728: 00200825 move at,at

40072c: 00200825 move at,at

Now we see the z variable address is read from a 64KiB data buffer using GP and adding negative offset to
it (line 18). More than that, the addresses of the three external functions which are used in our example

(puts(), scanf (), printf()), are also read from the 64KiB global data buffer using GP (lines 9, 16 and

26). GP points to the middle of the buffer, and such offset suggests that all three function’s addresses,
and also the address of the z variable, are all stored somewhere at the beginning of that buffer. That
make sense, because our example is tiny.

Another thing worth mentioning is that the function ends with two NOPs (MOVE $AT,$AT — an idle in-
struction), in order to align next function’s start on 16-byte boundary.

Initialized global variable

Let’s alter our example by giving the z variable a default value:

int x=10; // default value

Now IDA shows that the = variable is residing in the .data section:

Listing 1.78: Optimizing GCC 4.4.5 (IDA)

.text:004006A0 main:
.text:004006A0
.text:004006A0 var 10 = -0x10

83

1.9. SCANF()

.text:004006A0 var 8 = -8

.text:004006A0 var_ 4 = -4

.text:004006A0

.text:004006A0 lui $gp, 0x42
.text:004006A4 addiu $sp, -0x20
.text:004006A8 11 $gp, 0x418930
.text:004006AC sw $ra, 0x20+var _4($sp)
.text:004006B0 sw $s0, 0x20+var 8($sp)
.text:004006B4 sw $gp, 0x20+var 10($sp)
.text:004006B8 la $t9, puts
.text:004006BC lui $a0, 0x40
.text:004006C0 jalr $t9 ; puts
.text:004006C4 la $a0, aEnterX # "Enter X:"
.text:004006C8 lw $gp, 0x20+var 10($sp)

; prepare high part of x address:

.text:004006CC lui $s0, 0x41
.text:004006D0 la $t9, isoc99 scanf
.text:004006D4 lui $a0, 0x40

; add low part of x address:

.text:004006D8 addiu $al, $s0, (x - 0x410000)
; now address of x is in $al.

.text:004006DC jalr $t9 ; isoc99 scanf
.text:004006E0 la $a0, aD "%d"
.text:004006E4 1w $gp, 0x20+var 10($sp)

; get a word from memory:

.text:004006E8 lw $al, x

; value of x is now in $al.

.text:004006EC la $t9, printf
.text:004006F0 lui $a0, 0x40
.text:004006F4 jalr $t9 ; printf
.text:004006F8 la $a0, aYouEnteredD # "You entered %d..
.text:004006FC lw $ra, 0x20+var 4($sp)
.text:00400700 move $v0, $zero
.text:00400704 lw $s0, 0x20+var 8($sp)
.text:00400708 jr $ra

.text:0040070C addiu $sp, 0x20
.data:00410920 .globl x

.data:00410920 x: .word OxA

.\nu

Why not .sdata? Perhaps that this depends on some GCC option?

Nevertheless, now z is in .data, which is a general memory area, and we can take a look how to work with

variables there.

The variable’s address must be formed using a pair of instructions.

In our case those are LUI (“Load Upper Immediate”) and ADDIU (“Add Immediate Unsigned Word").

Here is also the objdump listing for close inspection:

Listing 1.79: Optimizing GCC 4.4.5 (objdump)

004006a0 <main>:

4006a0: 3clc0042 lui
4006a4: 27bdffed addiu
4006a8: 279c8930 addiu
4006ac: afbf001c sw
4006b0: afb0o0018 sw
4006b4: afbc0010 sw
4006b8: 81998034 lw
4006bc: 3c040040 lui
4006¢0: 03201809 jalr
4006c4: 248408d0 addiu
4006¢8: 8fbc0010 lw
; prepare high part of x address:
4006¢c: 3c100041 lui
4006d0: 8998038 lw
4006d4: 3c040040 lui

; add low part

of x address:

gp,0x42
sp,sp,-32
gp,gp, -30416
ra,28(sp)
s0,24(sp)
gp,16(sp)
t9,-32716(gp)
a0,0x40

t9
a0,a0,2256
gp,16(sp)

s0,0x41

t9,-32712(gp)
a0, 0x40

84

1.9. SCANF()

4006d8: 26050920 addiu al,s0,2336
; now address of x is in $al.

4006dc: 03201809 jalr t9

4006e0: 248408dc addiu a0,a0,2268

4006e4: 8fbc0010 lw gp,16(sp)

; high part of x address is still in $s0.
; add low part to it and load a word from memory:

4006e8: 8e050920 lw al,2336(s0)
; value of x is now in $al.

4006ec: 8199803c lw t9,-32708(gp)

4006f0: 3c040040 lui a0, 0x40

4006f4: 03201809 jalr t9

4006f8: 248408e0 addiu a0,a0,2272

4006fc: 8fbf001c lw ra,28(sp)

400700: 00001021 move v0, zero

400704 : 8fb00018 lw s0,24(sp)

400708: 03e00008 jr ra

40070c: 27bd0020 addiu sp,sp,32

We see that the address is formed using LUI and ADDIU, but the high part of address is still in the $S0
register, and it is possible to encode the offset in a LW (“Load Word”) instruction, so one single LW is
enough to load a value from the variable and pass itto printf() .

Registers holding temporary data are prefixed with T-, but here we also see some prefixed with S-, the
contents of which must be preserved before use in other functions (i.e., saved somewhere).

That is why the value of $S0 has been set at address 0x4006cc and has been used again at address
0x4006e8, after the scanf() call. The scanf() function does not change its value.

1.9.4 scanf()

As was noted before, it is slightly old-fashioned to use scanf() today. But if we have to, we have to
check if scanf() finishes correctly without an error.

#include <stdio.h>

int main()
{
int x;
printf ("Enter X:\n");

if (scanf ("%d", &x)==1)

printf ("You entered %d...\n", x);
else

printf ("What you entered? Huh?\n");

return 0;

i

By standard, the scanf() 7> function returns the number of fields it has successfully read.

In our case, if everything goes fine and the user enters a number scanf() returns 1, or in case of error
(or EOF’8) — 0.

Let’'s add some C code to check the scanf() return value and print error message in case of an error.
This works as expected:

C:\...>ex3.exe
Enter X:

123

You entered 123...

C:\...>ex3.exe

75scanf, wscanf: MSDN
76ENd of file

85

http://go.yurichev.com/17255

1.9. SCANF()

Enter X:
ouch
What you entered? Huh?

MSVC: x86

Here is what we get in the assembly output (MSVC 2010):

lea eax, DWORD PTR x$[ebp]
push eax
push OFFSET $SG3833 ; '%d', OOH
call _scanf
add esp, 8
cmp eax, 1
jne SHORT $LN2@main
mov ecx, DWORD PTR x$[ebp]
push ecx
push OFFSET $SG3834 ; 'You entered %d...', 0aH, 0O0H
call _printf
add esp, 8
jmp SHORT $LN1l@main
$LN2@main:
push OFFSET $SG3836 ; 'What you entered? Huh?', 0aH, OOH
call _printf
add esp, 4
$LN1@main:
xor eax, eax

The caller function (main()) needs the callee function (scanf ()) result, so the callee returns it in the
EAX register.

We check it with the help of the instruction CMP EAX, 1 (CoMPare). In other words, we compare the
value in the EAX register with 1.

A JINE conditional jump follows the CMP instruction. JNE stands for Jump if Not Equal.

So, if the value in the EAX register is not equal to 1, the CPU will pass the execution to the address
mentioned in the INE operand, in our case $LN2@main . Passing the control to this address results in the

CPU executing printf() with the argument What you entered? Huh? . But if everything is fine, the

conditional jump is not be taken, and another printf() callis to be executed, with two arguments:
'You entered %d...' and the value of x.

Since in this case the second printf() has notto be executed, thereisa JMP preceding it (unconditional
jump). It passes the control to the point after the second printf() and just before the XOR EAX, EAX
instruction, which implements return 0.

So, it could be said that comparing a value with another is usually implemented by CMP / Jcc instruction

pair, where cc is condition code. CMP compares two values and sets processor flags’’. Jcc checks those
flags and decides to either pass the control to the specified address or not.

This could sound paradoxical, but the CMP instruction is in fact SUB (subtract). All arithmetic instructions
set processor flags, not just CMP . If we compare 1l and 1, 1-1is 0 so the ZF flag would be set (meaning
that the last result is 0). In no other circumstances ZF can be set, except when the operands are equal.
JINE checks only the ZF flag and jumps only if it is not set. JINE is in fact a synonym for IJNZ (Jump
if Not Zero). Assembler translates both IJNE and JNZ instructions into the same opcode. So, the CMP
instruction can be replaced with a SUB instruction and almost everything will be fine, with the difference
that SUB alters the value of the first operand. CMP is SUB without saving the result, but affecting flags.

77x86 flags, see also: wikipedia.

86

http://go.yurichev.com/17120

1.9. SCANF()
MSVC: x86: IDA

It is time to run IDA and try to do something in it. By the way, for beginners it is good idea to use /MD
option in MSVC, which means that all these standard functions are not be linked with the executable file,

but are to be imported from the MSVCR*.DLL file instead. Thus it will be easier to see which standard
function are used and where.

While analyzing code in IDA, it is very helpful to leave notes for oneself (and others). In instance, analyzing
this example, we see that INZ is to be triggered in case of an error. So it is possible to move the cursor
to the label, press “n” and rename it to “error”. Create another label—into “exit”. Here is my result:

.text:00401000 main proc near
.text:00401000
.text:00401000 var 4
.text:00401000 argc
.text:00401000 argv
.text:00401000 envp
.text:00401000

dword ptr -4
dword ptr 8
dword ptr 0Ch
dword ptr 10h

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 push ecx

.text:00401004 push offset Format ; "Enter X:\n"
.text:00401009 call ds:printf

.text:0040100F add esp, 4

.text:00401012 lea eax, [ebp+var 4]
.text:00401015 push eax

.text:00401016 push offset aD ; "%d"
.text:0040101B call ds:scanf

.text:00401021 add esp, 8

.text:00401024 cmp eax, 1

.text:00401027 jnz short error

.text:00401029 mov ecx, [ebp+var 4]
.text:0040102C push ecx

.text:0040102D push offset aYou ; "You entered %d...\n"
.text:00401032 call ds:printf

.text:00401038 add esp, 8

.text:0040103B jmp short exit

.text:0040103D
.text:0040103D error: ; CODE XREF: main+27

.text:0040103D push offset aWhat ; "What you entered? Huh?\n"
.text:00401042 call ds:printf
.text:00401048 add esp, 4

.text:0040104B
.text:0040104B exit: ; CODE XREF: main+3B

.text:0040104B Xxor eax, eax
.text:0040104D mov esp, ebp
.text:0040104F pop ebp
.text:00401050 retn

.text:00401050 main endp

Now it is slightly easier to understand the code. However, it is not a good idea to comment on every
instruction.

You could also hide(collapse) parts of a function in IDA. To do that mark the block, then press “-” on the
numerical pad and enter the text to be displayed instead.

Let’s hide two blocks and give them names:

.text:00401000 text segment para public 'CODE' use32
.text:00401000 assume cs: text

.text:00401000 ;org 401000h

.text:00401000 ; ask for X

.text:00401012 ; get X

.text:00401024 cmp eax, 1
.text:00401027 jnz short error
.text:00401029 ; print result
.text:0040103B jmp short exit

.text:0040103D
.text:0040103D error: ; CODE XREF: main+27
.text:0040103D push offset aWhat ; "What you entered? Huh?\n"

87

1.9. SCANF()

.text:00401042 call ds:printf
.text:00401048 add esp, 4
.text:0040104B

.text:0040104B exit: ; CODE XREF: main+3B

.text:0040104B X0or eax, eax
.text:0040104D mov esp, ebp
.text:0040104F pop ebp
.text:00401050 retn

.text:00401050 main endp

To expand previously collapsed parts of the code, use “+” on the numerical pad.

88

1.9. SCANF()
By pressing “space”, we can see how IDA represents a function as a graph:

; int __cdecl main()
_main proc near

var_4= dword ptr -4
argc= dword ptr 8

argu= dword ptr @Ch
enup= dword ptr 16h

push ebp
mou ebp, esp
push ecx

push offset Format ; "Enter X:iwn'
call ds:printf

add esp, 4
lea eax, [ebpruar_4]
push eax
push offset ab ; Rd™
call ds:scanf
add esp, 8
cmp eax, 1
jnz short error
¥
BN
mou ecx, [ebp+uar_4]
push ecx EFror: ; "'What pou entered? Huh?ywn"™
push offset aYou ; "You entered %d...%n"[\push offset aWhat
call ds:printf call ds:printf
add esp, 8 add esp, 4
jmp short exit
vy
AN
exit:
KOV eax, eax
nov esp, ehp
pop ebp
retn
_main endp

Figure 1.17: Graph mode in IDA

There are two arrows after each conditional jump: green and red. The green arrow points to the block
which executes if the jump is triggered, and red if otherwise.

89

1.9. SCANF()
It is possible to fold nodes in this mode and give them names as well (“group nodes”). Let’s do it for 3
blocks:

; int _ cdecl maing)
_main proc near

var_4= dword ptr -4
argc= dword ptr 8

argu= dword ptr BCh
envp= dword ptr 18h

push ebp
mou ebp, esp
push ecx

push offset Format ; "Enter X:wn"
call ds:printf

add esp, 4

lea eax, [ebp+var_4]

push eax

push offset aD P
call ds:scanf

add esp, 8

cmp eax, 1

jnz short error

|1
4 L 4
HNu = HNw =

print error message| [print X

| |
Yy
HNul %S

return B8

Figure 1.18: Graph mode in IDA with 3 nodes folded

That is very useful. It could be said that a very important part of the reverse engineers’ job (and any other
researcher as well) is to reduce the amount of information they deal with.

90

1.9. SCANF()
MSVC: x86 + OllyDbg

Let’s try to hack our program in OllyDbg, forcing it to think scanf() always works without error. When an
address of a local variable is passed into scanf() , the variable initially contains some random garbage,
in this case 0x6E494714 :

E CPU - main thread, module ex3 ;lglﬂ
BOSZ100A| 5 55 PUSH _EEF i
et 0% e o [2
BE321004 PUSH OFFSET 80323008 Fo— B SEAATELC MSULRLEE. SE44el?
BEZZ1089 CALL OWORD PTR DZ:C<amsucRiee.printf>] (Lme | gpe BEEi-bes
BEZZ108F AOD ESF, 4 EoP BRASFRLA
BAZZ1A1Z LEA EAX, [EEF-41 EBF DP4SFEDS

31 - PLSH ERE ¢ |ESI cooopeel

16816[- BLIAIZAR | PUSH OFFSET BEZZZEEC [F-:
BESE101E CALL DWORD FTR DS:C<&MSUCR18@.scanf>] | bpe | EDT 98323383 ex3.@03233B3 —
BEZ21621 AOD ESF, 2 EIF BRZ21815 =q2.88321815
BE3Z1624 83F2 01 CHP EAX, 1 -
BE3Z1627 75 14 JHE SHORT @@zz1@30 £ EZ BEEE Zepit BIERREEEEE)
pEzzimezo(| - sB40 FC MOU ECH,DWORD PTR 55:[EEF-41 DB Sooamen oobit GlFFRFERFE)
gasziesci| - 51 PUSH ECR ellz @ OS GBZE 22Zhit GIFFFFFFFF]
Qaszloz 20 _LO2pZoaR | PLSH UFFSET SUCZORld fomed & 5 FS GBCE 22hit PEFODEGE(FFF)
Stack [BB4EFBDE‘] ex 3. BAZ23008, ASCII "Enter =:@" all T 5 G5 BEZE 32bit @(FFFFFFFF)
EAX=0@4 2FED =l I
0 8 LastErr GOEGE8883 ERROR_SUCCESS
+ || EFL @eeeezes (na,HE,HE,A,HS,FE, GE, &) -

Address |Hex dump ASCII [AMST = EE434714 OFFSET MSUCR1BE.. .
POSZo0P0| 85 GE 74 65| rf oF GO 50| OO OO 0O G| G 64 09 06| Enter HiE R [Sgggﬁég URH £ s
AAZZ3@1A| 59 6F vS 28|65 6E 74 65 ¥2 65 E4 28| 25 64 ZE ZE|You entered AR4SFEEG | - BABEEGEL BOf &S
BO323626| 26 BR BB 00|57 63 61 74|20 79 6F 75|20 65 6E 74|.0 What yoo |BE4ZFEER)a000R991
BO323636| 65 72 65 64| 3F 20 43 75|63 SF OA ©B|FF FF FE FF|ered? Huh?@ | DRAEFEED) | B174EEE
BE3Z3040| FE FF FF FF| G0 00 GO 00|00 OO 00 OO 00 06 G0 60 DBgSrEED) | galresds
GE323050| FE FF FF FF|G1 @@ @3 68 10 65 DS 22(E2 FA 20 DOlw & wep | 2O4EFEEL|) 22977501
BE323060| A1 GG 00 @@ 45 23 17 06 63 4E 17 00|00 @@ 68 pAl@ Hig hng | 2dEFERR)) 2998999 e
cas2os7ol 50 6 55 03 95 29 59 50 50 30 3 03 98 o9 o0 oo i | et
R N R I I I I T I e TN CodcrEre | smmanRag -

Figure 1.19: OllyDbg: passing variable address into scanf ()

91

1.9. SCANF()
While scanf() executes, in the console we enter something that is definitely not a number, like “asdasd”.

scanf () finishes with 0 in EAX, which indicates that an error has occurred:

[E cru - main thread, module ex3 |0 x|

BESZIOE|[E 55 FUSH _EEF -
pazz1eal || - Mol EEBF, ESP || EEE‘;EEEEEET”K] -

BA3Z1663 PUSH ECH
BE32 1664 PUSH OFFSET BB323008 e et s
BE3Z 1083 CALL DWORD PTR D5: C<&MSUCR1G8.prinef>] (LM B2 BEAZALLE
BEZ2166F ROD ESF, 4 ESF B@42FECC FTR to ASCI
BEIZ101Z LER B, [EBP-41 EBF DB45FBOS
EEIETE FOSH OFFSET opsz3on [EK E=1 oppanaal

[
EEEES FALL DWRD PTR O t<&HSUCRIBE. scani>] |Lue | EDI 08323388 ex3.pa323380
; : ADD ESP, 2 EIP BB321821 =3, 00321621 o
Bocclozd|| - coFe a1 CHF ERX, 1 :
gEzziaz?|| - 75 14 JHE SHORT @B221830 Eo EE R Sohir DLERRREEEES
BA3Z1623 SB4D0 FC MOU ECR,ONORD PTR $5:[EBF-41 B 5a AeSE ohlt BIFFFFRERED
P | Py | coxde e bsgoze Sooir piFFEREEEE)

S8 F5 BBSZ Zzoit rEFODBEELFFF)

MEVCR1B0. soanf revurned EAX = 1 alT & G55 BBEE ZEbit BIFFFFFFFF)
mm= [ITreTTY i Il
ESP=BB4ZFBCC, FTR to ASCII "Xd 0 @ LastErr DAAAEAAE ERROR_SUCCESS

« | eFL eeeaezez (no, e, HE, A, 1M, PO, GE, G) -

————

Address |Hex dump ASCIT [AMST & fBE323868C) ?E2 |ASCIT "xd™ N
BHZZo000| 48 GE 74 65| rZ 28 55 oH) DN G0 B8 08| 25 64 G0 60| Enter XiE BR4cPEDS| | BR4-FEDY) IE

OFFSET MEUCRiGE..

BE323010|53 EF 75 20 65 £E 4 6572 65 64 26|25 64 2E 2E|Vou entered | JA4SFEDd || €E4Z371
BE323620(2E BR 00 06|57 65 61 74|20 72 6F 75|20 65 €E 74|.E Uhat yoo | B24EFEDE)) BR4ZFLLT
BO3Z3630| 65 72 65 64| 3F 20 48 75| &8 3F OO @A FF FF FF FF|cred? Huht@ | DO4EFEDC) LBBSEL1BE)S
BE3Z2a46| FE FF FF FF| 69 B0 05 65| 66 B8 60 06| 68 60 08 GO s e
Ba323058(FE FF FF FF| @1 B0 0@ 08 10 @5 DS 22(E2 FA 2A DO|s & wap | BS4EFEEL)) BELTIECE) NS
BA3ZZAGA| AL BB B8 A6 45 22 17 GB|62 4E 17 06|69 B0 08 GB|8 Hi$ hod

from exd.l

BEd=FEEL || Z25TFon | s 4 =
BRIZIE7E| GA BP 0P GO AP PG DR 0D PO 0P AP PA|GD PE B3 GO
BEd=FEFE| | BEnREREE
BEIZIE06| 60 GF 0O G0 0D DO 00 0D GO 0D OO OO| 00 PG G0 GO
BEEE2A06] AR GRG0 66| GE G G665 BE GE G5 06| GE BH 06 G0 ¥ J G94ZFEF4|| BOA0G0GE hd

Figure 1.20: OllyDbg: scanf() returning error

We can also check the local variable in the stack and note that it has not changed. Indeed, what would
scanf () write there? It simply did nothing except returning zero.

Let’s try to “hack” our program. Right-click on EAX, Among the options there is “Set to 1”. This is what
we need.

We now have 1 in EAX, so the following check is to be executed as intended, and printf() will print
the value of the variable in the stack.

When we run the program (F9) we can see the following in the console window:

Listing 1.80: console window

Enter X:
asdasd
You entered 1850296084...

Indeed, 1850296084 is a decimal representation of the number in the stack (0x6E494714)!

92

1.9. SCANF()
MSVC: x86 + Hiew

This can also be used as a simple example of executable file patching. We may try to patch the executable
so the program would always print the input, no matter what we enter.

Assuming that the executable is compiled against external MSVCR*.DLL (i.e., with /MD option) 78, we see
the main() function at the beginning of the .text section. Let’s open the executable in Hiew and find
the beginning of the .text section (Enter, F8, F6, Enter, Enter).

We can see this:

EEIﬁEHrEKSEXE

C: \Polygon\ollydbgKEKB exe aj2 PE .00421008 | Hie
481 push ebp
mow ebp,esp
push ecx
push
call
add
.E 2:) lea
.08481815: 58 push
.0B481016: push
.BB481018B: call
.Bed4a1821 £ add
4: cmp ;
jnz --E
mow ecx, [ebp][-4]
push
push ; "You entered %d...
call
add
jmps --E
.E push ; 'What you entered?
.BB481842: call
.BR481848 ik add
.BB48184B:] xor
.0848184D: 8BES mow
.BB48184F: 5D pop
. 08481858 :
88481851 : D5ABB00 mow eax, ;0 IM°
‘FllElk 3CryBlk 4 3 G 7 a g ladleave 11

Figure 1.21: Hiew: main() function

Hiew finds ASCIIZ7? strings and displays them, as it does with the imported functions’ names.

78that’s what also called “dynamic linking”
79ASCII Zero (null-terminated ASCII string)

93

1.9. SCANF()

Move the cursor to address .00401027 (where the INZ instruction, we have to bypass, is located), press
F3, and then type “9090” (meaning two NOPs):

EEHEHHEK&EKE

C:\Polygoniollydbgiex3.exe HFWO EDITMODE a3? PE ©eee
28668406 : 55 push ebp
ge600401 - 2BE(mow ebp,esp
gee884683 - 5 push eCx
3. (8 push
2ae00409 : 15 call
gae0a4ar : 83C404 add
ggeeaa12 : F lea
ggeeadls: 5@ push
geenadle : push
20e00418 :] call
gaeea421 : 5 add
424 - el cmp
20008 ;9 nop
2ae0e I nop

] - mo
ARRRRAZC - & push
0ee0p42D: 68 push
20068) call
20868 ;8 A8 add
28666436 : % jmps
00000430 : 68 push
geee0442 ; 15 call

8- - add

286686448 - »or
206668440 8BES mow
gea6844F: 50 pop
00080450 :

]
A
Faal

Figure 1.22: Hiew: replacing JNZ with two NOPs

Then press F9 (update). Now the executable is saved to the disk. It will behave as we wanted.

Two NOPs are probably not the most aesthetic approach. Another way to patch this instruction is to write
just 0 to the second opcode byte (jump offset), so that IJNZ will always jump to the next instruction.

We could also do the opposite: replace first byte with EB while not touching the second byte (jump offset).
We would get an unconditional jump that is always triggered. In this case the error message would be
printed every time, no matter the input.

MSVC: x64
MSVC: x64
Since we work here with int-typed variables, which are still 32-bit in x86-64, we see how the 32-bit part

of the registers (prefixed with E-) are used here as well. While working with pointers, however, 64-bit
register parts are used, prefixed with R- .

94

1.9. SCANF()

Listing 1.81: MSVC 2012 x64

_DATA SEGMENT

$5G2924 DB 'Enter X:', OaH, OOGH
$5G2926 DB '%d', OOH
$5G2927 DB 'You entered %d...', OaH, OOH
$5G2929 DB 'What you entered? Huh?', 0aH, OOH
_DATA ENDS
_TEXT SEGMENT
x$ = 32
main PROC
$LN5:
sub rsp, 56
lea rcx, OFFSET FLAT:$5SG2924 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$5G2926 ; '%d'
call scanf
cmp eax, 1
jne SHORT $LN2@main
mov edx, DWORD PTR x$[rspl
lea rcx, OFFSET FLAT:$5G2927 ; 'You entered %d...'
call printf
jmp SHORT $LN1l@main
$LN2@main:
lea rcx, OFFSET FLAT:$SG2929 ; 'What you entered? Huh?'
call printf
$LN1@main:
; return 0
xor eax, eax
add rsp, 56
ret 0
main ENDP
_TEXT ENDS
END
ARM

ARM: Optimizing Keil 6/2013 (Thumb mode)

Listing 1.82: Optimizing Keil 6/2013 (Thumb mode)

var_8 = -8
PUSH {R3, LR}
ADR RO, aEnterX ; "Enter X:\n"
BL __2printf
MOV R1, SP
ADR RO, aD ;o "%sd”
BL __Oscanf
CMP RO, #1
BEQ loc 1E
ADR RO, aWhatYouEntered ; "What you entered? Huh?\n"
BL __2printf
loc 1A ; CODE XREF: main+26
MOVS RO, #0
POP {R3,PC}
loc_ 1E ; CODE XREF: main+12
LDR R1, [SP,#8+var 8]
ADR RO, aYouEnteredD ; "You entered %d...\n"
BL __2printf
B loc 1A

95

Co~NOOULA, WN =

1.9. SCANF()
The new instructions here are CMP and BEQS8O.

CMP is analogous to the x86 instruction with the same name, it subtracts one of the arguments from the
other and updates the conditional flags if needed.

BEQ jumps to another address if the operands were equal to each other, or, if the result of the last
computation has been 0, or if the Z flag is 1. It behaves as JZ in x86.

Everything else is simple: the execution flow forks in two branches, then the branches converge at the
point where 0 is written into the RO as a function return value, and then the function ends.

ARM64
Listing 1.83: Non-optimizing GCC 4.9.1 ARM64

.LCO:

.string "Enter X:"
.LC1:

.string "sd"
.LC2:

.string "You entered %d...\n"
.LC3:

.string "What you entered? Huh?"
f6:
; save FP and LR in stack frame:

stp x29, x30, [sp, -32]!
; set stack frame (FP=SP)

add x29, sp, 0

; load pointer to the "Enter X:" string:
adrp x0, .LCO
add x0, x0, :lo0l2:.LCO
bl puts
; load pointer to the "%d" string:
adrp x0, .LC1

add x0, x0, :lol2:.LC1
; calculate address of x variable in the local stack
add x1l, x29, 28
bl __1s0c99 scanf
; scanf() returned result in WO.
; check it:
cmp wo, 1

; BNE is Branch if Not Equal

; SO0 if WO<>0, jump to L2 will be occurred
bne .L2

; at this moment WO=1, meaning no error

; load x value from the local stack
ldr wl, [x29,28]

; load pointer to the "You entered %d...\n" string:
adrp x0, .LC2

add x0, x0, :lol2:.LC2
bl printf

; skip the code, which print the "What you entered? Huh?" string:
b .L3

.L2:
; load pointer to the "What you entered? Huh?" string:
adrp x0, .LC3

add x0, x0, :lol2:.LC3
bl puts

.L3:

; return 0
mov wO, 0O

; restore FP and LR:
1dp x29, x30, [sp], 32
ret

Code flow in this case forks with the use of CMP /BNE (Branch if Not Equal) instructions pair.

80(PowerPC, ARM) Branch if Equal

96

1.9. SCANF()

MIPS

Listing 1.84: Optimizing GCC 4.4.5 (IDA)
.text:004006A0 main:
.text:004006A0
.text:004006A0 var 18 = -0x18
.text:004006A0 var 10 = -0x10
.text:004006A0 var 4 = -4
.text:004006A0
.text:004006A0 lui $gp, 0x42
.text:004006A4 addiu $sp, -0x28
.text:004006A8 11 $gp, 0x418960
.text:004006AC sw $ra, 0x28+var 4($sp)
.text:004006B0 sw $gp, 0x28+var 18($sp)
.text:004006B4 la $t9, puts
.text:004006B8 lui $a0, 0x40
.text:004006BC jalr $t9 ; puts
.text:004006C0O la $a0, aEnterX # "Enter X:"
.text:004006C4 1w $gp, 0x28+var_18($sp)
.text:004006C8 lui $a0, 0x40
.text:004006CC la $t9, isoc99 scanf
.text:004006D0 la $a0, aD # "%d"
.text:004006D4 jalr $t9 ; isoc99 scanf
.text:004006D8 addiu $al, $sp, 0x28+var_10 # branch delay slot
.text:004006DC 1i $vl, 1
.text:004006E0 Tw $gp, Ox28+var 18($sp)
.text:004006E4 beq $v0o, $vl1, loc 40070C
.text:004006E8 or $at, $zero # branch delay slot, NOP
.text:004006EC la $t9, puts
.text:004006F0 lui $a0, 0x40
.text:004006F4 jalr $t9 ; puts
.text:004006F8 la $a0, aWhatYouEntered # "What you entered? Huh?"
.text:004006FC lw $ra, 0x28+var 4($sp)
.text:00400700 move $v0, $zero
.text:00400704 jr $ra
.text:00400708 addiu $sp, 0x28
.text:0040070C loc 40070C:
.text:0040070C la $t9, printf
.text:00400710 lw $al, 0x28+var 10($sp)
.text:00400714 lui $a0, 0x40
.text:00400718 jalr $t9 ; printf
.text:0040071C la $a0, aYouEnteredD # "You entered %d...\n"
.text:00400720 lw $ra, 0x28+var 4($sp)
.text:00400724 move $v0, $zero
.text:00400728 jr $ra
.text:0040072C addiu $sp, 0x28

scanf () returns the result of its work in register $V0. It is checked at address 0x004006E4 by comparing

the values in $VO0 with $V1 (1 has been stored in $V1 earlier, at 0x004006DC). BEQ stands for “Branch
Equal”. If the two values are equal (i.e., success), the execution jumps to address 0x0040070C.

Exercise

As we can see, the INE / JINZ instruction can be easily replaced by the JE/JZ and vice versa (or BNE

by BEQ and vice versa). But then the basic blocks must also be swapped. Try to do this in some of the
examples.

1.9.5 Exercise

* http://challenges.re/53

97

http://challenges.re/53

1.10. ACCESSING PASSED ARGUMENTS
1.10 Accessing passed arguments

Now we figured out that the caller function is passing arguments to the callee via the stack. But how does
the callee access them?

Listing 1.85: simple example

#include <stdio.h>

int f (int a, int b, int c¢)

{
return a*b+c;

+

int main()

{
printf ("sd\n", f(1, 2, 3));
return 0;

IE

1.10.1 x86

MSVC

Here is what we get after compilation (MSVC 2010 Express):
Listing 1.86: MSVC 2010 Express

_TEXT SEGMENT

~a$ = 8 ; size = 4
_b$ =12 ; size = 4
~c$ = 16 ; size = 4
i PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR a$[ebpl]
imul eax, DWORD PTR b$[ebp]
add eax, DWORD PTR c$[ebpl
pop ebp
ret 0
_f ENDP
_main PROC
push ebp
mov ebp, esp
push 3 ; 3rd argument
push 2 ; 2nd argument
push 1 ; 1st argument
call _f
add esp, 12
push eax
push OFFSET $5G2463 ; '%d', 0aH, OO0H
call _printf
add esp, 8
; return 0
xor eax, eax
pop ebp
ret 0
~main ENDP

What we see is that the main() function pushes 3 numbers onto the stack and calls f(int,int,int).

Argument access inside f() is organized with the help of macros like:
_a$ = 8, in the same way as local variables, but with positive offsets (addressed with plus). So, we are
addressing the outer side of the stack frame by adding the _a$ macro to the value in the EBP register.

98

1.10. ACCESSING PASSED ARGUMENTS
Then the value of a is stored into EAX . After IMUL instruction execution, the value in EAX is a product
of the value in EAX and the contentof b.

After that, ADD adds the valuein c to EAX.

The value in EAX does not need to be moved: it is already where it must be. On returning to caller, it
takes the EAX value and use it as an argument to printf() .

MSVC + OllyDbg

Let’s illustrate this in OllyDbg. When we trace to the first instructionin f() thatuses one of the arguments
(first one), we see that EBP is pointing to the stack frame, which is marked with a red rectangle.

The first element of the stack frame is the saved value of EBP, the second one is RA, the third is the first
function argument, then the second and third ones.

To access the first function argument, one needs to add exactly 8 (2 32-bit words) to EBP .
OllyDbg is aware about this, so it has added comments to the stack elements like
“RETURN from” and “Argl = ..."”, etc.

N.B.: Function arguments are not members of the function’s stack frame, they are rather members of the
stack frame of the caller function.

Hence, OllyDbg marked “Arg” elements as members of another stack frame.

[& cPu - main thread, module ex |0l =|
B0 BEE) P EEEE EHEHEEEPESP ex. u | Registers (FPUI -
SB4E 03 MOU EA, DWORD PTR_S5:[ARG. 1] E palaeced
- GFOF4E BC | INUL_EAX,DWORD TR S5: [ARS, 21 — = geaanERl
pazoioen|| - @345 1e AOD EAX,DWORD PTR £5: [ARG. 31 £ EREcHERE
ozoioe0|| - 0 EEF Eor hmaEFDer
sazoieeE|L. €3
poeDioeE b L3 EEF GB4EFDSC
BRzDiger| o EE ES] GOOGBEGE
eezDiolt|| - SBEC MOU EEF,ESP EDIT BERaamas —
sazoloiz|| . én s FUSH 2 . |EIP 28201883 x.B6201663
DochioiE|l: e Fhet 2 [Ei C @ ES BBZE 2bit @(FFFFFFFF)
goz01615(| « ES EZFFFFFF | CALL Boz0i@ee = E L ES BRD Zibir DLERRERREE
sazoisie|| . S3ca ec AOO ESP,BC -
pocoiolel] - 83 A0 ESF., |z 1 0% 6GZE 3Zbit BOFFFFFFFF)
Stack TUG4EFDRI-T T8 Ge oo acbiv GCFFFRFRRR) |
= & it
ERX=88152550 =
0 6 LastErr GO0O0068 ERROR_SUCCESS
v 0 EFL_ooomaz4c (MO, NE,E, BE, NS, PE,GE,LE) =
Add H d BE4EFDOYE | par
TEETEE R R oo U9EFDen| LoEZ01E1E| Ak | FRETURN from ex.BB2D1088 fro o
G S o e e e e e [
BO20BE30| 00 0O 08 06 02 08 08 0B 01 69 69 69| 6o 6o oo ool QCEEECETLEREETIRGs, Lrad 22
DESLERRE oo 22 ER DD BE EE B oE 22 B D 27 AR BE g8 28l |eedEFDrallenizzalss- |RETURN from ew.@8201818 to e
GEZ0BAGA| 63 GO GO 00 65 GO 00 0 G O 00 05 66 0o oo pal | S94EFDTE raeeagsalle]
cacfers) o 53 5o 25 52 25 08 5 a8 5 B0 00 08 52 5 Gl | seerhnd| melacens s
pEzDEAcn| b6 05 G5 06 60 Do Do BE| G608 0o G5 oo oo oo ool A4EFDES|| EDASASEL] tre h

Figure 1.23: OllyDbg: inside of f() function

GCC

Let’'s compile the same in GCC 4.4.1 and see the results in IDA:

Listing 1.87: GCC 4.4.1

public f
f proc near
arg ® = dword ptr 8
arg 4 = dword ptr 0Ch
arg 8 = dword ptr 10h

push ebp

99

1.10. ACCESSING PASSED ARGUMENTS

mov ebp, esp
mov eax, [ebp+arg 0] ; 1st argument
imul eax, [ebp+arg 4] ; 2nd argument
add eax, [ebp+arg 8] ; 3rd argument
pop ebp
retn
f endp
public main
main proc near
var 10 = dword ptr -10h
var C = dword ptr -0Ch
var 8 = dword ptr -8
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov [esp+10h+var 8], 3 ; 3rd argument
mov [esp+10h+var C], 2 ; 2nd argument
mov [esp+10h+var_10], 1 ; 1st argument
call f
mov edx, offset aD ; "%d\n"
mov [esp+10h+var C], eax
mov [esp+10h+var 10], edx
call _printf
mov eax, 0
leave
retn
main endp

The result is almost the same with some minor differences discussed earlier.

The stack pointer is not set back after the two function calls(f and printf), because the penultimate LEAVE
(.1.6 on page 1009) instruction takes care of this at the end.

1.10.2 x64

The story is a bit different in x86-64. Function arguments (first 4 or first 6 of them) are passed in registers
i.e. the callee reads them from registers instead of reading them from the stack.

MSVC

Optimizing MSVC:
Listing 1.88: Optimizing MSVC 2012 x64

$5G2997 DB '%d', 0aH, OOH
main PROC
sub rsp, 40
mov edx, 2
lea r8d, QWORD PTR [rdx+1] ; R8D=3
lea ecx, QWORD PTR [rdx-1] ; ECX=1
call f
lea rcx, OFFSET FLAT:$SG2997 ; '%d'
mov edx, eax
call printf
xor eax, eax
add rsp, 40
ret 0
main ENDP
f PROC

; ECX - 1st argument
; EDX - 2nd argument

100

1.10. ACCESSING PASSED ARGUMENTS
; R8D - 3rd argument

imul ecx, edx
lea eax, DWORD PTR [r8+rcx]
ret 0

f ENDP

As we can see, the compact function f() takes all its arguments from the registers.
The LEA instruction here is used for addition, apparently the compiler considered it faster than ADD .

LEA is also used in the main() function to prepare the first and third f() arguments. The compiler
must have decided that this would work faster than the usual way of loading values into a register using

MOV instruction.

Let’s take a look at the non-optimizing MSVC output:
Listing 1.89: MSVC 2012 x64

f proc near

; shadow space:

arg 0 = dword ptr 8
arg 8 = dword ptr 16h
arg 10 = dword ptr 18h
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
mov [rsp+arg_10], r8d
mov [rsp+arg 8], edx
mov [rsp+arg_ 0], ecx
mov eax, [rsp+arg 0]
imul eax, [rsp+arg 8]
add eax, [rsp+arg 10]
retn
f endp
main proc near
sub rsp, 28h
mov r8d, 3 ; 3rd argument
mov edx, 2 ; 2nd argument
mov ecx, 1 ; 1st argument
call f
mov edx, eax
lea rcx, $5G2931 ;o "%sd\n"
call printf
; return 0
xor eax, eax
add rsp, 28h
retn
main endp

It looks somewhat puzzling because all 3 arguments from the registers are saved to the stack for some
reason. This is called “shadow space” 8': every Win64 may (but is not required to) save all 4 register
values there. This is done for two reasons: 1) it is too lavish to allocate a whole register (or even 4
registers) for an input argument, so it will be accessed via stack; 2) the debugger is always aware where
to find the function arguments at a break 82.

So, some large functions can save their input arguments in the “shadows space” if they want to use them
during execution, but some small functions (like ours) may not do this.

It is a caller responsibility to allocate “shadow space” in the stack.

81MSDN
82MSDN

101

http://go.yurichev.com/17256
http://go.yurichev.com/17257

1.10. ACCESSING PASSED ARGUMENTS
GCC

Optimizing GCC generates more or less understandable code:

Listing 1.90: Optimizing GCC 4.4.6 x64

f:
; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
imul esi, edi
lea eax, [rdx+rsi]
ret
main:
sub rsp, 8
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edi, OFFSET FLAT:.LCO ; "%d\n"
mov esi, eax
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

Non-optimizing GCC:
Listing 1.91: GCC 4.4.6 x64

f:
; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov DWORD PTR [rbp-12], edx
mov eax, DWORD PTR [rbp-4]
imul eax, DWORD PTR [rbp-8]
add eax, DWORD PTR [rbp-12]
leave
ret
main:
push rbp
mov rbp, rsp
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edx, eax
mov eax, OFFSET FLAT:.LCO ; "%d\n"
mov esi, edx
mov rdi, rax
mov eax, 0 ; number of vector registers passed
call printf
mov eax, 0
leave
ret

There are no “shadow space” requirements in System V *NIX ([Michael Matz, Jan Hubicka, Andreas Jaeger,
Mark Mitchell, System V Application Binary Interface. AMD64 Architecture Processor Supplement, (2013)]
83), but the callee may want to save its arguments somewhere in case of registers shortage.

83Also available as https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

102

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

1.10. ACCESSING PASSED ARGUMENTS

GCC: uint64_t instead of int

Our example works with 32-bit int, that is why 32-bit register parts are used (prefixed by E-).

It can be altered slightly in order to use 64-bit values:

#include <stdio.h>
#include <stdint.h>

uint64 t f (uint64 _t a, uint64 t b, uint64 t c)

{
return a*b+c;
I
int main()
{
printf ("%lld\n", f(0x1122334455667788,
0x1111111122222222,
0x3333333344444444));
return 0;
HE
Listing 1.92: Optimizing GCC 4.4.6 x64
f proc near
imul rsi, rdi
lea rax, [rdx+rsi]
retn
f endp
main proc near
sub rsp, 8
mov rdx, 3333333344444444h ; 3rd argument
mov rsi, 1111111122222222h ; 2nd argument
mov rdi, 1122334455667788h ; 1st argument
call f
mov edi, offset format ; "%lld\n"
mov rsi, rax
Xor eax, eax ; number of vector registers passed
call _printf
xor eax, eax
add rsp, 8
retn
main endp

The code is the same, but this time the full size registers (prefixed by R-) are used.

1.10.3 ARM

Non-optimizing Keil 6/2013 (ARM mode)

.text:000000A4 00 30 AO El1 MOV R3, RO
.text:000000A8 93 21 20 EO MLA RO, R3, R1l, R2
.text:000000AC 1E FF 2F E1l BX LR
.text:000000B0 main

.text:000000B0 10 40 2D E9 STMFD SP!, {R4,LR}
.text:000000B4 03 20 AO E3 MOV R2, #3
.text:000000B8 02 10 AO E3 MOV R1, #2
.text:000000BC 01 00 AO E3 MOV RO, #1
.text:000000C0 F7 FF FF EB BL f
.text:000000C4 00 40 AO E1 MOV R4, RO
.text:000000C8 04 10 A0 E1 MOV R1, R4
.text:000000CC 5A OF 8F E2 ADR RO, aD 0 ;o "%d\n"
.text:000000D0 E3 18 00 EB BL __2printf
.text:000000D4 00 00 AO E3 MOV RO, #0
.text:000000D8 10 80 BD E8 LDMFD SP!, {R4,PC}

103

1.10. ACCESSING PASSED ARGUMENTS B
The main() function simply calls two other functions, with three values passed to the first one —(f()).

As was noted before, in ARM the first 4 values are usually passed in the first 4 registers (RO - R3).
The f() function, as it seems, uses the first 3 registers (RO - R2) as arguments.

The MLA (Multiply Accumulate) instruction multiplies its first two operands (R3 and R1), adds the third

operand (R2) to the product and stores the result into the zeroth register (RO), via which, by standard,
functions return values.

Multiplication and addition at once®* (Fused multiply-add) is a very useful operation. By the way, there
was no such instruction in x86 before FMA-instructions appeared in SIMD &>,

The very first MOV R3, RO, instruction is, apparently, redundant (a single MLA instruction could be used
here instead). The compiler has not optimized it, since this is non-optimizing compilation.

The BX instruction returns the control to the address stored in the LR register and, if necessary, switches
the processor mode from Thumb to ARM or vice versa. This can be necessary since, as we can see, function

f() is not aware from what kind of code it may be called, ARM or Thumb. Thus, if it gets called from

Thumb code, BX is not only returns control to the calling function, but also switches the processor mode
to Thumb. Or not switch, if the function has been called from ARM code [ARM(R) Architecture Reference
Manual, ARMv7-A and ARMv7-R edition, (2012)A2.3.2].

Optimizing Keil 6/2013 (ARM mode)

.text:00000098 f
.text:00000098 91 20 20 EO MLA RO, R1l, RO, R2
.text:0000009C 1E FF 2F E1 BX LR

And here is the f() function compiled by the Keil compiler in full optimization mode (-03).

The MOV instruction was optimized out (or reduced) and now MLA uses all input registers and also places
the result right into RO, exactly where the calling function will read and use it.

Optimizing Keil 6/2013 (Thumb mode)

.text:0000005E 48 43 MULS RO, R1
.text:00000060 80 18 ADDS RO, RO, R2
.text:00000062 70 47 BX LR

The MLA instruction is not available in Thumb mode, so the compiler generates the code doing these two
operations (multiplication and addition) separately.

First the MULS instruction multiplies RO by R1, leaving the result in register RO . The second instruction
(ADDS) adds the result and R2 leaving the result in register RO .

ARM64

Optimizing GCC (Linaro) 4.9

Everything here is simple. MADD is just an instruction doing fused multiply/add (similar to the MLA we
already saw). All 3 arguments are passed in the 32-bit parts of X-registers. Indeed, the argument types
are 32-bit int’s. The result is returned in WO .

Listing 1.93: Optimizing GCC (Linaro) 4.9

madd wO, wO, wl, w2
ret

84Wikipedia: Multiply-accumulate operation
85wikipedia

104

http://go.yurichev.com/17016
http://go.yurichev.com/17103

1.10. ACCESSING PASSED ARGUMENTS

main:

; save FP and LR to stack frame:
stp x29, x30, [sp, -16]!
mov w2, 3
mov wl, 2
add x29, sp, 0
mov wo, 1
bl f
mov wl, w0
adrp x0, .LC7
add x0, x0, :lol2:.LC7
bl printf

; return 0
mov wo, 0

; restore FP and LR
ldp x29, x30, [sp], 16
ret

LC7:

.string "%d\n"

Let’s also extend all data types to 64-bit uint64 t and test:

#include <stdio.h>
#include <stdint.h>

uint64 t f (uint64 _t a, uint64 t b, uint64 t c)

{
return a*b+c;
I
int main()
{
printf ("%lld\n", f(0x1122334455667788,
0x1111111122222222,
0x3333333344444444));
return 0;
HE
f:
madd x0, x0, x1, x2
ret
main:
mov x1, 13396
adrp x0, .LC8
stp x29, x30, [sp, -16]!
movk x1, 0x27d0, 1sl 16
add x0, x0, :1o0l2:.LCS8
movk x1, 0x122, 1lsl 32
add x29, sp, O
movk x1, Ox58be, 1sl 48
bl printf
mov wO, 0
ldp x29, x30, [sp], 16
ret
.LC8:

.string "slld\n"

The f() function is the same, only the whole 64-bit X-registers are now used. Long 64-bit values are
loaded into the registers by parts, this is also described here: 1.32.3 on page 442.

Non-optimizing GCC (Linaro) 4.9

The non-optimizing compiler is more redundant:

105

1.10. ACCESSING PASSED ARGUMENTS

f:

sub sp, sp, #16
str wO, [sp,12]
str wl, [sp,8]
str w2, [sp,4]
ldr wl, [sp,12]
ldr wO, [sp,8]
mul wl, wl, wO
ldr wo, [sp,4]
add wO, wl, woO
add sp, sp, 16
ret

The code saves its input arguments in the local stack, in case someone (or something) in this function

needs using the WO...W2 registers. This prevents overwriting the original function arguments, which
may be needed again in the future.

This is called Register Save Area. ([Procedure Call Standard for the ARM 64-bit Architecture (AArch64),
(2013)186). The callee, however, is not obliged to save them. This is somewhat similar to “Shadow
Space”: 1.10.2 on page 101.

Why did the optimizing GCC 4.9 drop this argument saving code? Because it did some additional optimizing
work and concluded that the function arguments will not be needed in the future and also that the registers
WO...W2 will not be used.

We also see a MUL / ADD instruction pair instead of single a MADD .

1.10.4 MIPS

Listing 1.94: Optimizing GCC 4.4.5

.text:00000000 f:

; $a0=a

; $al=b

; $a2=c

.text:00000000 mult $al, $a0

.text:00000004 mflo $vO

.text: 00000008 jr $ra

.text:0000000C addu $v0, $a2, $voO ; branch delay slot

; result is in $vO upon return
.text:00000010 main:
.text:00000010

.text:00000010 var 10 = -0x10

.text:00000010 var 4 = -4

.text:00000010

.text:00000010 lui $agp, (__gnu local gp >> 16)
.text:00000014 addiu $sp, -0x20

.text:00000018 la $gp, (__gnu local gp & OXFFFF)
.text:0000001C sw $ra, Ox20+var_4($sp)

.text:00000020 sw $gp, 0x20+var 10($sp)

; set c:

.text:00000024 1i $a2, 3

; set a:

.text:00000028 11 $a0, 1

.text:0000002C jal f

; set b:

.text:00000030 1i $al, 2 ; branch delay slot
; result in $vO now

.text:00000034 lw $gp, Ox20+var 10($sp)

.text:00000038 lui $a0, ($LCO >> 16)

.text:0000003C lw $t9, (printf & OXFFFF) ($gp)
.text:00000040 la $a0, ($LCO & OXFFFF)

.text:00000044 jalr $t9

; take result of f() function and pass it as a second argument to printf():
.text:00000048 move $al, $voO ; branch delay slot
.text:0000004C lw $ra, Ox20+var_4($sp)

86 Also available as http://go.yurichev.com/17287

106

http://go.yurichev.com/17287

1.11. MORE ABOUT RESULTS RETURNING

.text:00000050 move $v0, $zero
.text:00000054 jr $ra
.text: 00000058 addiu $sp, 0x20 ; branch delay slot

The first four function arguments are passed in four registers prefixed by A-.

There are two special registers in MIPS: Hl and LO which are filled with the 64-bit result of the multiplication
during the execution of the MULT instruction.

These registers are accessible only by using the MFLO and MFHI instructions. MFLO here takes the low-
part of the multiplication result and stores it into $V0. So the high 32-bit part of the multiplication result
is dropped (the HI register content is not used). Indeed: we work with 32-bit int data types here.

Finally, ADDU (“Add Unsigned”) adds the value of the third argument to the result.

There are two different addition instructions in MIPS: ADD and ADDU . The difference between them is not
related to signedness, but to exceptions. ADD can raise an exception on overflow, which is sometimes
useful®” and supported in Ada PL, for instance. ADDU does not raise exceptions on overflow.

Since C/C++ does not support this, in our example we see ADDU instead of ADD .
The 32-bit result is left in $VO0.

There is a new instruction for us in main() : JAL (“Jump and Link”).

The difference between JAL and JALR is that a relative offset is encoded in the first instruction, while
JALR jumps to the absolute address stored in a register (“Jump and Link Register”).

Both f() and main() functions are located in the same object file, so the relative address of f() is
known and fixed.

1.11 More about results returning

In x86, the result of function execution is usually returned 88 in the EAX register. If it is byte type or a
character (char), then the lowest part of register EAX (AL) is used. If a function returns a float number,
the FPU register ST(0) is used instead. In ARM, the result is usually returned in the RO register.

1.11.1 Attempt to use the result of a function returning void

So, what if the main() function return value was declared of type void and not int? The so-called startup-
code is calling main() roughly as follows:

push envp
push argv
push argc
call main
push eax
call exit

In other words:

exit(main(argc,argv,envp));

If you declare main() as void, nothing is to be returned explicitly (using the return statement), then

something random, that has been stored in the EAX register at the end of main() becomes the sole
argument of the exit() function. Most likely, there will be a random value, left from your function execution,
so the exit code of program is pseudorandom.

We can illustrate this fact. Please note that here the main() function has a void return type:

87http://go.yurichev.com/17326
88See also: MSDN: Return Values (C++): MSDN

107

http://go.yurichev.com/17326
http://go.yurichev.com/17258

1.11. MORE ABOUT RESULTS RETURNING

#include <stdio.h>

void main()

{
I

printf ("Hello, world!\n");

Let’s compile it in Linux.

GCC 4.8.1 replaced printf() with puts() (we have seen this before: 1.5.4 on page 21), but that’s OK,
since puts() returns the number of characters printed out, just like printf() . Please notice that EAX
is not zeroed before main() 's end.

This implies that the value of EAX at the end of main() contains what puts() has left there.

Listing 1.95: GCC 4.8.1

.LCO:

.string "Hello, world!"
main:

push ebp

mov ebp, esp

and esp, -16

sub esp, 16

mov DWORD PTR [esp], OFFSET FLAT:.LCO

call puts

leave

ret

Let’ s write a bash script that shows the exit status:

Listing 1.96: tst.sh

#!/bin/sh
./hello world
echo $?

And run it:

$ tst.sh
Hello, world!
14

14 is the number of characters printed. The number of characters printed is slips from printf() through
EAX / RAX into “exit code”.

By the way, when we decompile C++ in Hex-Rays, we can often encounter a function which terminated
with destructor of some class:

call ??1CString@@QAE@XZ ; CString::~CString(void)

mov ecx, [esp+30h+var C]
pop edi

pop ebx

mov large fs:0, ecx

add esp, 28h

retn

By C++ standard, destructor doesn’t return anything, but when Hex-Rays don’t know about it, and thinks
that both destructor and this function returns int, we can see something like that in output:

return CString::~CString(&Str);

108

1.11. MORE ABOUT RESULTS RETURNING
1.11.2 What if we do not use the function result?

printf() returnsthe count of characters successfully output, but the result of this function is rarely used
in practice.

It is also possible to call a function whose essence is in returning a value, and not use it:

int f()
{
// skip first 3 random values:
rand();
rand();
rand();

// and use 4th:
return rand();

I

The result of the rand() function is left in EAX, in all four cases.

But in the first 3 cases, the value in EAX is just not used.

1.11.3 Returning a structure

Let’s go back to the fact that the return value is left in the EAX register.

That is why old C compilers cannot create functions capable of returning something that does not fitin one
register (usually int), but if one needs it, one have to return information via pointers passed as function’s
arguments.

So, usually, if a function needs to return several values, it returns only one, and all the rest—via pointers.

Now it has become possible to return, let’s say, an entire structure, but that is still not very popular. If
a function has to return a large structure, the caller must allocate it and pass a pointer to it via the first
argument, transparently for the programmer. That is almost the same as to pass a pointer in the first
argument manually, but the compiler hides it.

Small example:

struct s
{
int a;
int b;
int c;
It
struct s get some values (int a)
{
struct s rt;
rt.a=a+l;
rt.b=a+2;
rt.c=a+3;
return rt;
I

...what we got (MSVC 2010 /0x):

$T3853 = 8 ; size = 4
_a$ =12 ; size = 4
?7get_some_ values@aYA?AUs@@H@Z PROC ; get _some_ values

mov ecx, DWORD PTR a$[esp-4]
mov eax, DWORD PTR $T3853[esp-4]
lea edx, DWORD PTR [ecx+1]

mov DWORD PTR [eax], edx

lea edx, DWORD PTR [ecx+2]

add ecx, 3

mov DWORD PTR [eax+4], edx

mov DWORD PTR [eax+8], ecx

109

1.12. POINTERS

ret 0
7get _some values@@YA?AUs@@H@Z ENDP ; get some values

The macro name for internal passing of pointer to a structure here is $T3853 .

This example can be rewritten using the C99 language extensions:

struct s
{
int a;
int b;
int c;
I
struct s get some values (int a)
{
return (struct s){.a=a+l, .b=a+2, .c=a+3};
I

Listing 1.97: GCC 4.8.1

_get_some values proc near

ptr to struct = dword ptr 4

a = dword ptr 8
mov edx, [esp+al
mov eax, [esp+ptr _to struct]
lea ecx, [edx+1]
mov [eax], ecx
lea ecx, [edx+2]
add edx, 3
mov [eax+4], ecx
mov [eax+8], edx
retn

_get_some_values endp

As we see, the function is just filling the structure’s fields allocated by the caller function, as if a pointer
to the structure has been passed. So there are no performance drawbacks.

1.12 Pointers

1.12.1 Swap input values

This will do the job:

#include <memory.h>
#include <stdio.h>

void swap bytes (unsigned char* first, unsigned char* second)

{
unsigned char tmpl;
unsigned char tmp2;
tmpl=*first;
tmp2=*second;
*first=tmp2;
*second=tmpl;

};

int main()

{

// copy string into heap, so we will be able to modify it
char *s=strdup("string");

110

1.12. POINTERS

// swap 2nd and 3rd characters
swap_bytes (s+1, s+2);

printf ("%ss\n", s);

i

As we can see, bytes are loaded into lower 8-bit parts of ECX and EBX using MOVZX (so higher parts of
these registers will be cleared) and then bytes are written back swapped.

Listing 1.98: Optimizing GCC 5.4

swap_bytes:
push ebx
mov edx, DWORD PTR [esp+8]
mov eax, DWORD PTR [esp+12]

movzx ecx, BYTE PTR [edx]
movzx ebx, BYTE PTR [eax]

mov BYTE PTR [edx], bl
mov BYTE PTR [eax], cl
pop ebx

ret

Addresses of both bytes are taken from arguments and through execution of the function are located in
EDX and EAX.

So we use pointers: probably, there is no better way to solve this task without them.

1.12.2 Returning values

Pointers are often used to return values from functions (recall scanf() case (1.9 on page 66)).

For example, when a function needs to return two values.

Global variables example

#include <stdio.h>

void fl (int x, int y, int *sum, int *product)
{
*sum=x+y;
*product=x*y;
+;

int sum, product;

void main()

{
£1(123, 456, &sum, &product);

printf ("sum=%d, product=%d\n", sum, product);

I

This compiles to:

Listing 1.99: Optimizing MSVC 2010 (/Ob0)

COMM _product :DWORD
COMM _sum:DWORD
$5G2803 DB 'sum=%d, product=%d', 0aH, 0O0H
X$ = 8 ; size = 4
y$ = ; size = 4
_sum$ = 16 ; size = 4
_product$ = ; size = 4
_fl PROC
mov ecx, DWORD PTR y$[esp-4]
mov eax, DWORD PTR x$[esp-4]
lea edx, DWORD PTR [eax+ecx]

111

1.12. POINTERS

imul eax, ecx
mov ecx, DWORD PTR product$[esp-4]
push esi
mov esi, DWORD PTR sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0
_fl ENDP
~main PROC

push OFFSET product
push OFFSET _sum

push 456 ; 000001c8H
push 123 ; 0000007bH
call _f1

mov eax, DWORD PTR product
mov ecx, DWORD PTR sum
push eax

push ecx

push OFFSET $5G2803
call DWORD PTR _ imp printf

add esp, 28
xor eax, eax
ret 0

_main ENDP

112

1.12. POINTERS
Let’s see this in OllyDbg:

=10| x|
6 fomooron |PUSH OFFSET BESroson Registers [MMX)
&5 S433a7o0 | PUSH OFFSET ABST3334 S |
o | B (e __NEcH cE434714 ASCIT "HIFT
ED¥ BORBEEEE
eps7io21|| - EZ CAFFFFFF | CALL BBS7ioea By Boooea60
pEcrieze|| - Al S22ScPRE | HOU EAY,DWORD PTR DS:[S7328S2] Eor BRsaraEa
BBST1B3E MOU EC,DWORD TR DS:[E72384] S =
e | PUSH ECk ¢ |Es! poogagol
" s
aozriaaz|| - PUSH OFFSET @@a7aons [F-: EQI B@73398 global. BRS7 3399
aosriads | - CALL DUDRD PTR DS: [CAMSUCRLOD.prinef>] (L |EIP B037102A olobal. 00571020 -
. ' C 8 ES BB S2bit BIFFFFFFFF)
Rt | I wOR ER:, ERX F 1 0 BE2S 22bit BIFFFFFFFF)
- A B S5 BEZE 3bit BLFFFFFFFF)
sooiiocoll . B2 SoRonnd | CALL D007 1IES S @ F5 @52 32bit FEFDOERELFFF)
Stack [OEOGFSEAI=alobal. G007 2644 i
Inm=EBBEB1CE (decimal 458.) =4[& G5 BE2E 3abiv BLFFFFRRFEF)
08 LastErr GREOEBEE ERROR_SUCCESS
+ | eFL sowmEz4e (MO, ME,E,BE,NS,PE,GE,LE) =
Address |Hew dump ASCII (AMSI BEg7Yased 122 -
BG573000[P8 75 60 SO| 25 64 ZC 28| 70 72 6F 64|75 63 ¢4 50| Bum=id, prodof qooorocs [Sgg;ﬁg? YE | reTuRn £ lobi
BE272E16| 25 &4 GA 88| FF FF FF FF|FF FF FF FF| G0 B8 8 G| Xdd ARSAFers | BReREEsi| 8 fen ek
GE373020| FE FF FF FF @1 @@ 99 @@ 13 AC FC EA|E7 53 @3 1S(w @ g | 29SEFSER) Gaeaeeali@ o e
BE573030| 81 B0 00 @8 43 23 46 0063 4E 46 OO 99 00 9@ 08|0 H(F hHF | BASEESEd) BE4EAECE nhE P
BESTS046(08 DB 5O BE|B5 0D 0B OB OO 05 PO DO| BB BD 0B OO A030FaFe| EASCEEad| dub
BPSTS05E(0B DB BE BE|BE BB 0B 0P 0P OE PO DO| BB DD 0B 00 e | EoccEead i
BBSTSOCA(08 DO BO BO|BE 0D OB OB OO OO DO BB| GO BD 0B OO e
R e R R e o
R e R e R R e e e e e A B ol COZEFZEC| BERERREE =

Figure 1.24: OllyDbg: global variables addresses are passed to f1()

First, global variables’ addresses are passed to f1() . We can click “Follow in dump” on the stack element,
and we can see the place in the data segment allocated for the two variables.

113

1.12. POINTERS

These variables are zeroed, because non-initialized data (from BSS) is cleared before

the execution begins, [see ISO/IEC 9899:TC3 (C C99 standard), (2007) 6.7.8p10].

They reside in the data segment, we can verify this by pressing Alt-M and reviewing the memory map:

X1 Memory map - 10| x|
Address |Size Own et Sect ion Contains Tupe| Access | Initial|Mapped as _:J
HHESEEEE | HEHE4EEE Map [R R

BRBEEEAE | BEEE 1 A58 Friv|RW Rl

HEATEEAD | BEDGTEEE Map |R F C:~lWindows~5ustem3z~la;
BE 159888 | BERETEEE Friv|[BW GualBW Gua

BAZE08AE | AEEE 1388 Priv|[BW GualBW Gua

HHIEHESAE | HEHE2EEE Stack of main thread FPriv|RW Rl

BA4E8888 | AEEEEEEE Heap FPriv|RW Rl

BE4ABEEE | QE0EFEEE Frivw|RW Rl

BREEEEAA | BERECEEE Default heap Friv|RW Rl

BASTARAR | BERE1E8E| global FE header Ima (R RWE Cop

BESV 1860 | B0EE1886| global tent Code Ima [R E RUWE Cop

BAST2E800 | 808616068 global rdata Imports Ima |R RWE Cop

BESFIEE8 BoaE1888| global .data Data Ima |RBW RWE Cop

HEZT4EEH| BEDE1E0E| glaobal reloc Relocat ions Ima |R EWE Cop

EESERBAR | BEEE1B8E| MSUCR 188 FE header Ima (R EWE Cop

SE3E 1880 BAHE2EEHE | MSUCE 184 tert Code, imports, edports Ima |R E EUWE Cop

EE492880 | A0aEsE88 | MSUCR 188 .data Data Ima [EBW Copt RWE Cop

SE4998@0 | BE0E 1008 | MSUCE 188 S CELE Fesources Ima |R EWE Cop

SE49REAN | BEDESE0E | MSUCE 186 reloc Relocat ions Ima |R EWE Cop

FEE0EEAR | BEEEA1B8E | Mod_FEED FE header Ima (R EWE Cop

FEE01868 | HEHE3EEE Ima [R E EUWE Cop

TEE04888 | BE6E 1 888 Ima [RW RWE Cop

TEE05EEE | QEnEIEEaE Ima (R EWE Cop

TSEEBBAR | BEEE 1888 | Mod_vEE5E FE header Ima (R REUWE Cop

FEEE1888 | AERd0EEE Ima [R E EWE Cop

FEEZEBAR | ARRREREA Ima [EW Copt BWE Cop

TEEI2880 | A0EE9888 Ima [R RWE Cop

Figure 1.25: OllyDbg: memory map

114

1.12. POINTERS

Let’s trace (F7) to the start of f1() :

[E cru - main thread, module global O] x|
T coaczd Be | 10U ECH,DWORD PTR S5: LARG. 2] :
BEET 1664 | - 64 |MO. EAX,DWORD PTR S5: [ARS. 11 = Egilggigzaig”m |
BEET 1 BAS LEA EDH, [ECH+EAX] Sk AR
IHUL EA%, ECH e L
MOW ECH, DWORD PTR SS: [ARG. 41 Ev Donnanan
HOU EST.DWDRD PTR SS5: [ARG. 31 ESF Bo3uFsDs
' : : EEF BEIEFIZC
MOU OWORD FTR DS:[ESII,EOX EET meer et
Egg EE?HD FTR D35: [ECAT.ERH EDI 88372398 alobal.B@S7a39@
RETH EIP BES71860 olobal. AES7166E -
.y
BEZF1ALF 5 INT= it
eosribee| 65 83399768 | FUSH OFFSET po37agss 98 55 DREE Sibin DIERRREEERS
pecriaze | - fn BASSETREG | PUSH QFFSET Gesrosod SL PR DhEE aopi BLERREERREL
Stack LOOSOFELEI=AEDEE1CE [decimal 9EE.) -
ECH=EE494714 [MEUCRIBE. initenul L g G BEsE Ssbiv BIFFRFERFEES
Local call from 871831 0 8 LastErr GOEAGEEESS ERROR_SUCCESS
EFL @@@@az4s (MO,ME,E,BE,MS,PE, GE,LE] |

Address | Hex dump ASCITI [(AMSI & CHEZV1I036| &2 | RETURM from alob. g
BO573000| 68l 15 60 SU| 2o 64 oh 26| 78 72 GF 64 7o 63 ¢4 30| suncRd. proi—d oosoeoes || Goooot io | La o
BEST3E16| 25 &4 BA BB FF FF FF FF|FF FF FF FF| B8 B8 68 90| 5dg rEnisl| EEEEE I

BOS7I62A| FE FFOFF FF G1 G0 G0 08|18 AC FC EA|E7 53 63 15|s & tie | BESEFSEL)| D087o28d) 022

BOSTIGEA| Bl OO 0 08|45 25 46 GG|S5 4E 46 6| G GO 05 GA|G HOF hNE | DOSEFEES)| oaerssmmMes g o o Lot
BASTZA4P| PE B9 G0 DF| G0 DA B9 BO| 00 GF PR G5 60 P 6B BQ BosgreEr| Lagsr il o rom alob.
BASTSASH|PA B9 G0 OB G0 0 GO 00|00 GO PR OO 69 PG GO B9 R | I ——— ey
BESTIRCE| B BB GO DB 6B B GO B0| 00 OB PR OD G0 GG BB GO DOSEFSRd| Dodsdres hiF K

BBioots0| b6 b6 G5 o 6b on Ob ba|bg bA b4 b4 65 ob oo o BO3OFEFC| EACCES34 4l

BRS7I606| AR BE GE 66 G6 GR AR 66| B0 A0 A6 O6 G GH GE GR x| fa95ersen) aoaoaaod -

Figure 1.26: OllyDbg: f1() starts

Two values are visible in the stack 456 (0x1C8) and 123 (0x7B), and also the addresses of the two global
variables.

115

1.12. POINTERS

Let’s trace until the end of f1() . In the left bottom window we see how the results of the calculation
appear in the global variables:

E CPU - main thread, module global

=10l x|

BooylGDn| s DB4Czd 8% | MOW ECH, DWORD PR S5t LORG. 2] i
pasviaas|| - 64 |[MOU ERX,DWORD PTRE 55:CARS. 1] = EE&‘;E;EEEEQHH] 1=
FEEEEEE I LER EDH, [ECH+ERK] __NECH BRSFIEes global.BRSTERES
: E0¥ GREREZ43
sasvieeE|(| - 18 |HoU Ec,DWORD PTR S55:[ARG.41 S
pasviaiz|| - FUSH EST Eir noarena
pasviaiz|] - 18 |mMOU ESI,OWORD PTR 55z [ARG.3] EiF onaaraae
- IOy DwoRD FIR Dg:IESLI.EDH ECI MEEFEEEH global. PASFIS0
: ' EDI BRAST3559 g lobal.BESF339E
EIF BBET181E olobal.BESFIG1E .
C 8 ES GEZE 32bit BFFFFFFEF)
FEEEEE I = F1 CS B@23 22hit @(FFFFFFFF]
BEET1E2E| 8 PUSH OFFSET BRE7EIcs AP0 iE DR b OIEEEEEREE
%ﬁ;k wemdao i PUAH LPPCRT oueroae S @ FS BASS 32hit PEFODEEELFFF]
Top_of prack Loosor =] 7 & &5 waze 32bic BUFFFFFFFF)
0 8 LastErr PEPAEAEA ERROR_SUCCESS
+ || EFL @@e@ezes (nO,HE,HE,A,HS,FE, GE, &) -
Address ASCIT CAMST a BHEEGEE] | & -
BOTroood 48 DF G 66 18 DB B0 B0JE: 06 06 05 0F GF o0 60|08 tH & SSESEEBE ggggéggg %’3 RETURM from glob—0
BESTIIT BE G5 GF GG GE B3 G5 69| m-ESmeES ErEEE Y | e
BESTYE3A4| 06 Ao 60 05 G0 PG BO GO| 00 BB PR OO GO PE BB G0 e | IR
BAST33E4| PG B9 60 0B G0 PG GO GD| 00 GO PR OO 6O PE GO BA DoZEFoEd|| BacTazed 422
BESTISCA|BE BB B0 DB R GG GO BD| 0O OB PR DD GO GG BB GO DoZARSES| | GaeTIees I ME | o uRy ¢ Lob
AESTIE04| 90 0P 0P 0H| 08 0P BR GG B0 @O @R OR| GE BE G0 @@ e e rom giab.
BESTZ3E4| PG B9 60 05GP PG GO B0| 00 GB B 05 G0 PG BB BG paarerdl peeaetl Br laserr moner
BBosa4n4| 05 OB G 0| 65 6 b 65|05 o b5 54| 5 b5 bS b 0B3OFSFS| DodE2gds| HIE §
BRZ7a414| AR A6 G666 66 GR GR 66|60 A0 A0 06 G6 G666 6@ Y H938FSFC) ERACCESS | 4UiFe b

Figure 1.27: OllyDbg: f1() execution completed

116

1.12. POINTERS
Now the global variables’ values are loaded into registers ready for passing to printf() (via the stack):

[E cru - main thread, module global - 10| x|

BEET 1G1E TC THTS
BES7IELF| GG INTZ 4 fFegisters L) =
BEETIEEE|rE 65 SESS6FEA | PUSH OFFSET BBSFIsss _NEct coopezas
pozviozs|| -+ 62 S43357E@ | PUSH OFFSET BRSraase Ehn poapEeas
posriezal| - 62 Ceblesed |PUSH 108 Eel Aoannaen
pazriazr|| - EA 7B FUSH 7E Eob mmenEen
aazriasi|| - ES CAFFFEFF |CALL mesrises EBF OB5OFaot
eozviaze|| - AL S233cvea |MOU EAX, DWORD PTR DS:[2733831 Eo] IEEEREEEE
i 8880 S433E001 M0U EC, DUORD PTR DS: (5733841] EDI BRES398 olobal.BEE7I39E
H . . .
BGZ7im4z|| » Gl FUSH ECH [<5 EIF @a571841 global.BEE71641 .
pozriosz|| - &2 pos@srem |PUSH OFFSET Besraomo £ -
oosrieas|| - FFIE DpZBgrel CALL DWORD PTR DS:L<aMSUCR1BE.printf>l |Lre |5 5 E2 222 S2blt BIEEEERREE)
SSE;%S;E : gggg 1c ESE EEE-%EH A @ S5 BEZE 3Zbit BIFFFFFFFF)
poacioel)] . 22 HOR AR vz @ DS @928 32bit BIFFFFFFFF)
Stack [DUIOTELSI=alobal, BB IE5E S0 R EEEE ffbir CERODEEALECF)
ERX=BRBA0ELE (decimal SEESS.) ZQ 1 2 G5 DAk SZbiv BUIFFFFFFFFY
0 B LastErr PEEEBEEH ERROF_SUCCESS

+ || EFL @eeeezes (na,HE,HE,A, M5, FE, GE, &) -
Addresz |Hen dump ASCII [AMSI = HEEEEATE | L -
BOSTSS54| 43 G B0 0D 16 OB 05 00 Of Ob 00 G5 00 0O 05 66|06 TH 8 osEFoEn|| pozeelie) g _—
BASY3394| 60 2F 45 35|60 2F 45 35|08 69 0O 68| B3 B3 B9 96| mESMAES agafobd|| facrazes s
BAST33A4| PG B0 B0 05| G0 DG BO GO| 00 GO PR OE 60 PE GO B4 e | [T L= Lob
BESTIEE4| B0 AR 08 G0 08 00 OR GO0 BE GR BE G0 B8 B0 @8 G0 RASEFSEE| BRoEGEs] | & rar glab.
BESTISCA|BE BB B0 DB GE BE GO B0| 00 BB B OB BB PG BB B6 EEErEe) I) LA R —
BESTI204| PG G5 B0 DB GF 6O GO G0| 00 OB GG DD 0D PG BB B0 oSEFord| oacdEes|nhE K e
BASYZ3E4|PA G0 60 0B G0 PG BE G| 00 GF PR OF G0 PE BB BQ SOZArarE| ghdezEasidiE.
R EEoREREEE o RRRRE S
BESTE414 BE GE GG 06| 66 66 BE G606 GE B GE GH BE GE 66 x| 9926F904) BREGE0A0 h

Figure 1.28: OllyDbg: global variables’ addresses are passed into printf ()

Local variables example

Let’s rework our example slightly:

Listing 1.100: now the sum and product variables are local

void main()

{
int sum, product; // now variables are local in this function
f1(123, 456, &sum, &product);
printf ("sum=%d, product=%d\n", sum, product);

b

f1() code will not change. Only the code of main() will do:

Listing 1.101: Optimizing MSVC 2010 (/Ob0)

_product$ = -8 ; size = 4

_sum$ = -4 ; size = 4

~main PROC

; Line 10
sub esp, 8

; Line 13
lea eax, DWORD PTR product$[esp+8]
push eax
lea ecx, DWORD PTR sum$[esp+12]
push ecx
push 456 ; 000001c8H
push 123 ; 0000007bH
call _fl

; Line 14
mov edx, DWORD PTR product$[esp+24]
mov eax, DWORD PTR sum$[esp+24]
push edx
push eax

push OFFSET $5G2803

call DWORD PTR imp printf
; Line 15

xor eax, eax

117

1.12. POINTERS

add esp, 36
ret 0

118

1.12. POINTERS
Let's look again with OllyDbg. The addresses of the local variables in the stack are 0x2EF854 and
OX2EF858 . We see how these are pushed into the stack:

[E cru - main thread, module local O] x|

BERE1D1E TC TS -
BEAE1B1F CC INTZ A | Registers L) =
BBACIBEE|rs SIEC B3 SUE ESP, & |0t Geancors
peRcipzs|| - SOBdzd LEA EAX, [LOCAL. 1] S
N | B FUSH_EA FEY BammmRan
BEAELEZT)| - E04424 B3 |LEA EAX, [LOCAL.A] Eir Booraos
BoncTozt|| - GE Loulooos | PUSH 105 EER DaEFESsS
meRcipzi|| - &R 7E FUSH 7E Eol pamnaoal
eanc1a2z|| - E2 COFFFFFF |CALL @ansieea EHI EaRaammg
BRAeinoc|| - FFeas4 18 | PUSH DUORD PTR 55: CLDGAL. &) e -
BeAc1e46|| - 65 £BI6REEE |PUSH OFFSET @OAS30EE Asc |E 3 EZ fEck Szbit BLERFFEERR)
BEAc1B4S|| - ES BEBBODEE |CALL <JMP.LMSUCRILB. printf> dur |F B 5 29cs Sehit AULEREEREEE
penetaanll @ E3E% -4 SRR ERReERE ~lz & DS @@ZE SEbit @0FFFFFFFF)
QUHCLadll . dakd . S B FS BBSZ Z2bit PEFDDBEGLFFF)
gtack [HOZEE =7 & &5 veze 3201t BCFFRRFFFF)
08 LastErr GREAOEOE ERROR_SUCCESS

~ | EFL meeaszez (MO, HE,HE,A,HS, PO, GE, G) -
Address |Hex dump ASCII (AHSI . | 29SEFSSS/] OOBOAEE] | @ -
GEAE3000| g8 /S 60 SO 25 &4 ZC 6| (0 72 6F 64|75 63 74 oO| Bun—id, Droiff poserooi| - aanelase| s |RETURN from loca—
BEACZE16| 25 64 BA BO| 01 OF B9 00 DO B0 00 BO| 00 0D B8 06| XA o DRZEFSSD) BeomemEl Do
BBAE30ZE| FE FF FF FF|FF FF FF FF| A3 7B 4% AE|S6 54 EY 54| acHe | BESERESY) Bo4DOFES) LAN
BEACS0ZE|BE OE BB DO| DB BB 0O DB Bi B0 B BO| S5 OF 40 0B B DoZERSES) 2A4OLDES) TN
BBASZG46| FS CO 40 BO| 00 BB 0O 0G| BB 00 BR BO| 05 BB BO OF|°=H DRZEFSCD| HBeoEasl) 1Mfn
BBACZOCE|BG G5 BR BO| 03 BB 0O B3 DO 0D B3 BO| 0D BR 0O OB DRZEFET| goonaacd i
BEAGSDER| 6O GO BE G6| 03 BR 0O R DO GO BR BO| OO BB 0O OO DRZEFETY| ZEoomEedl .
SRR EEE R R e
e R G R I A L e A B T CocErecy| BAZEFEED L. =

Figure 1.29: OllyDbg: local variables’ addresses are pushed into the stack

119

1.12. POINTERS

f1() starts. So far there is only random garbage in the stack at 0x2EF854 and Ox2EF858:

BEAG 1 E6E

B

SBESd24 B2
SBE4424 BC

1]
2EV424 B2
shacis

BFAFFZz
2962
2B4424 14
3938

cE

MOL EDK, DWORD FTR SS5: [ARG. 21
MOW - EAK, DWORD PTR S55: [ARG. 2]
PUSH ESI

MOW ESI,OWORD FTR SS:[ARG.11
LER ECH, [EDR+EZI]

IMUL ESI,ED

MOL OWORD PTR DS:[ERX].ECH
MOW ERX, OWORD PTR S5: [ARG. 41
MO DWORD FTR DS: [EHAI,.ESI
FOP ESI

rY

C main thread, module local O] x|

Registers [MHH]

ERx [BEZEFSSS
ECH Ba4DCOFS
EDX BEEEEEEE
EEBY BEAEEEGEE
ESF BEZEF34@
EEF BEZEFZ35
ESI BEpBaaE1
EDI BEEa8a6:

CE EIF BEAG1OGE |ocal.BER5 1666 =

EE C @ ES B@ZE 32bit B(FFFFFFFF)
JoRelniE EE F 8 CS @823 32bit @(FFFFFFFF)
ponelolfl o St e 8 A @ 55 B8ZE ZZbit B(FFFFFFFF)
doncices 1 Spnded LES ERc [Locnl 1] - % S Eg SSEE EEE{E ?EEEEEEEEE}F]
EE;EE [BEZEF242]1=08BEE1CE (decimal 456.1 " E g 55 BEZE 22hit BLFFFFFFFF)
Local call from BAGIEEE 0@ LastErr GEREEEEE ERROR_SUCCESS

= EFL @em@Ezez (MO, HE,NE, A, NS, FO, GE, G -

Address |Hex dump ASCIT [AMST u CEBRe1832| Sk | RETURM from loca 4
BEAE3A00[8l 15 60 OU| 25 64 b 20| 78 7 GF 64 75 63 ¢4 30| Suncad. proi—) aasceoas || Gaaoei ig | ta o
BENEZE16[25 64 BA 0B 01 OB BB DO| B0 B0 PO OO B 0O 0O 0D 2dE © coseraac! | ao2eracs| o
BERE2EEE| FE FF FF FF|FF FF FF FF|A% TE 42 OE| 56 &4 E7 S4|w wiHe | ReeErseel | BRsEFaDa | 1o
BENESEI6(B PO GO 0D 05 0B 98 G5Bl B0 PO 0B 22 9F 40 GO & aosErocal | s21eFRaE| k- ul RETURN to MaucR1
BERE2E4E(F2 CO 40 09| 69 98 B9 90|90 90 PO 00 08 B8 08 68| °=n e | EE R p -
BANEIECA(PR B GO 05| 69 69 B9 90|50 PO PO 06 08 08 68 GO aaseraes | Lopac 1267 | 4w | BETURM £ loca__I
BEASIG5E| 958 G0 09 B6) G0 09 BE 00| 00 95 00 G008 G0 09 66 RosErace| DRonsanl|a ran tees
crepmomenanEsrEe s il
RAENEZASE| BR BR G0 G| HA QR RA QA BA GR BR GR BR BH GA GR T | ABEFSES) BA4OCORE| 77N hd

Figure 1.30: OllyDbg: f1() starting

120

1.13. GOTO OPERATOR
f1() completes:

[E cru - main thread, module local -0 x|

EERG10EE| s SESded Ba MU ECW, DWORD FTR S5: LARG. 24 7
BERG1oa4|| - SE4424 BC MOU ERX, OWORD FTR S5: [ARG. =1 = EEELSESEEBEE”K] =
GERsioas|| - E& FUSH ESI ECH BOEOOZAZ
BERG1EE3|| - SEF424 @2 MOY ESI,OWORD PTR S5:[ARG. 11 EDH BEEEE LS
GEAG1AE0| | - LEA ECH, [EDN+ESI] EE BROODEEE
aaneiaia) | - IMUL ESI,EDH ESF BEZEFZ3C
BERG1E1E| | - MOW OWORD FPTR DS: CEAXI, ECH EEF BE=EFSoa
. MO EAX,OWORD PTR 552 CARG. 41 ESI SEEEDELS
MOV OWORD PTR DS: [EAX1,ESI EDI SEEsEEER

FOF ESI
EIF BEAS1EIE local.@EAclElE b

C B ES B82B 3Zbit B(FFFFFFFF)

F 1 CS @323 32bit BIFFFFFFFF)
BEE 1 12 ; 2 B DS boob 3201t GUFFFFFFFE)

(] - L

%ta;k doddad e LER SR DGR L £ @ FS GEE3 3Zhit FEFODABALFFF)
ESI=@BOB0ELE (decimal SEBSE.) 2B ©G° E02E Scbhiv BUFFFFRFRF)

0B LastErr GDODODEE ERROR_SUCCESS

v | EFL Be@aEzEE (MO, NE,NE,A, NS, FE, GE, G) -

Address |Hex dump ASCII [AMSI lu ff 99ZEFS4d | rE@a@aars | .
GORE3000[8l 5 60 SU| 25 64 i 26| 7@ 72 GF &4 7S 63 ¢4 30| Suncad. pro—f oascoas || Daoppice | e o
BORESA16(25 64 GF 05|51 6O DO DD DO 6@ 0O OO 05 GF B 66| Zd o DoZECEC|| BRSEFESS) HE
BEREZGZ6| FE FF FF FF|FF FF FF FF A9 7B 43 AB| 56 54 BT G4/ & —————— W&
BEREZA30(05 DO 0D 0P| DB bR DO 08| B1 G0 DO DD 52 OF 40 69) ODZEFESH | DoooDElC e
BEREZA46| FS CO 40 0F| 0B B BB 08| 6O G0 0O 05|03 B3 B8 66| o=H S o | EETURN from L
BEASIECEH| B8 B0 05 BG) G0 0O BE G0 00 O G0 GO 05 G0 0O 66 BAoEFRca| COOBOERL|E rem Lesa
BORESEEG| BB GG G5 GO 05 BB DO 00| GO 0O 00 OO 05 08 09 6O P Eroon pommoEll B
= HEEr R L R e
BERE3A90| 00 B0 05 op 0 bn Be 66|60 B0 DO D6l 60 DR 6o 60 T coctrocn] ABSEESSl) 1M -

Figure 1.31: OllyDbg: f1() completes execution

We now find 0xDB18 and 0x243 at addresses 0x2EF854 and 0x2EF858 . These values are the f1()
results.

Conclusion

f1() could return pointers to any place in memory, located anywhere.
This is in essence the usefulness of the pointers.
By the way, C++ references work exactly the same way. Read more about them: (3.19.3 on page 562).

1.13 GOTO operator

The GOTO operator is generally considered as anti-pattern, see [Edgar Dijkstra, Go To Statement Con-
sidered Harmful (1968)8°]. Nevertheless, it can be used reasonably, see [Donald E. Knuth, Structured
Programming with go to Statements (1974)%°] °1,

Here is a very simple example:

#include <stdio.h>

int main()
{
printf ("begin\n");
goto exit;
printf ("skip me!\n");
exit:
printf ("end\n");
I

Here is what we have got in MSVC 2012:

89http://yurichev.com/mirrors/Dijkstra68.pdf
Ohttp://yurichev.com/mirrors/KnuthStructuredProgrammingGoTo.pdf
91[Dennis Yurichev, C/C++ programming language notes] also has some examples.

121

http://yurichev.com/mirrors/Dijkstra68.pdf
http://yurichev.com/mirrors/KnuthStructuredProgrammingGoTo.pdf

1.13. GOTO OPERATOR

Listing 1.102: MSVC 2012

$5G2934 DB 'begin', 0aH, OO6H
$5G2936 DB 'skip me!', @aH, OOH
$5G2937 DB 'end', OaH, OOH
~main PROC
push ebp
mov ebp, esp
push OFFSET $5G2934 ; 'begin'
call _printf
add esp, 4
jmp SHORT $exit$3
push OFFSET $SG2936 ; 'skip me!'
call _printf
add esp, 4
$exit$3:
push OFFSET $5G2937 ; 'end'
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0
_main ENDP

The goto statement has been simply replaced by a JMP instruction, which has the same effect: uncondi-
tional jump to another place. The second printf() could be executed only with human intervention, by
using a debugger or by patching the code.

122

1.13. GOTO OPERATOR
This could also be useful as a simple patching exercise. Let’s open the resulting executable in Hiew:

C:\Polygon'goto.exe a32 PE .bB4016o6e
: ebp
ebp,esp

printf
add esp,
jmps

push

call printf
add esp,
push

call printf
add esp,

I‘__I 0 I'_'l

Figure 1.32: Hiew

123

1.13. GOTO OPERATOR B
Place the cursor to address JMP (0x410), press F3 (edit), press zero twice, so the opcode becomes

EB 00 :

C:\Polygon\goto.exe EFW0 EDITMODE a32 PE ©Doee8l13
55 push ebp
Mo ebp,esp
push
call
add
jmps

push
call
add
push
call
add

I‘__I O I‘__I

Figure 1.33: Hiew

The second byte of the JMP opcode denotes the relative offset for the jump, 0 means the point right after
the current instruction.

So now JMP not skipping the second printf() call.
Press F9 (save) and exit. Now if we run the executable we will see this:

Listing 1.103: Patched executable output

C:\...>goto.exe

begin
skip me!
end

The same result could be achieved by replacing the JMP instruction with 2 NOP instructions.

NOP has an opcode of 0x90 and length of 1 byte, so we need 2 instructions as JMP replacement (which
is 2 bytes in size).

1.13.1 Dead code

The second printf() callis also called “dead code” in compiler terms.

This means that the code will never be executed. So when you compile this example with optimizations,
the compiler removes “dead code”, leaving no trace of it:

Listing 1.104: Optimizing MSVC 2012

$5G2981 DB 'begin', 0aH, 0GH
$5G2983 DB 'skip me!', 0aH, 0GH
$5G2984 DB 'end', O@aH, OOGH
~main PROC
push OFFSET $5G2981 ; 'begin'
call _printf
push OFFSET $5G2984 ; 'end'
$exit$d:

124

1.14. CONDITIONAL JUMPS

call _printf
add esp, 8
xor eax, eax
ret 0

_main ENDP

However, the compiler forgot to remove the “skip me!” string.

1.13.2 Exercise

Try to achieve the same result using your favorite compiler and debugger.

1.14 Conditional jumps

1.14.1 Simple example

#include <stdio.h>

void f signed (int a, int b)

{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
b
void f unsigned (unsigned int a, unsigned int b)
{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
b
int main()
{
f signed(1l, 2);
f unsigned(1l, 2);
return 0;
b
x86
x86 + MSVC

Here is how the f signed() function looks like:

Listing 1.105: Non-optimizing MSVC 2010

a$ =8
b = 12
_f signed PROC
push ebp
mov ebp, esp

mov eax, DWORD PTR a$[ebp]

cmp eax, DWORD PTR b$[ebp]

jle SHORT $LN3@f signed

push OFFSET $SG737 ; 'a>b!

125

1.14. CONDITIONAL JUMPS

call printf
add esp, 4
$LN3@f signed:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR b$[ebp]
jne SHORT $LN2@f signed
push OFFSET $SG739 ; 'a==b'
call printf
add esp, 4
$LN2@f signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR b$[ebp]
jge SHORT $LN4@f signed
push OFFSET $5G741 ; ‘a<b!
call printf
add esp, 4
$LN4@f signed:
pop ebp
ret 0
_f signed ENDP

The first instruction, JLE , stands for Jump if Less or Equal. In other words, if the second operand is larger
or equal to the first one, the control flow will be passed to the specified in the instruction address or label.
If this condition does not trigger because the second operand is smaller than the first one, the control flow

would not be altered and the first printf() would be executed. The second check is INE : Jump if Not
Equal. The control flow will not change if the operands are equal.

The third check is JGE : Jump if Greater or Equal—jump if the first operand is larger than the second
or if they are equal. So, if all three conditional jumps are triggered, none of the printf() calls would
be executed whatsoever. This is impossible without special intervention. Now let’s take a look at the
f unsigned() function. The f unsigned() function is the same as f signed() , with the exception

that the JBE and JAE instructions are used instead of JLE and JGE, as follows:
Listing 1.106: GCC

~a$ =8 ; size = 4
b$ =12 ; size =4
_f unsigned PROC
push ebp
mov ebp, esp

mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR Db$[ebp]
jbe SHORT $LN3@f unsigned
push OFFSET $SG2761 ;o 'a>b!
call printf
add esp, 4

$LN3@f unsigned:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR b$[ebp]
jne SHORT $LN2@f unsigned
push OFFSET $SG2763 ; 'a==b'
call printf
add esp, 4

$LN2@f _unsigned:
mov edx, DWORD PTR a$[ebp]
cmp edx, DWORD PTR Db$[ebp]
jae SHORT $LN4@f unsigned
push OFFSET $5G2765 ; 'a<b'
call printf
add esp, 4

$LN4@f unsigned:
pop ebp
ret 0

_f unsigned ENDP

As already mentioned, the branch instructions are different: JBE —Jump if Below or Equal and JAE —Jump

if Above or Equal. These instructions (JA/ JAE / B/ JBE) differ from JG/JGE/JL/JLE in the fact that
they work with unsigned numbers.

126

1.14. CONDITIONAL JUMPS

See also the section about signed number representations (2.2 on page 454). That is why if we see
JG/JL in use instead of JA/JB or vice-versa, we can be almost sure that the variables are signed or
unsigned, respectively. Here is also the main() function, where there is nothing much new to us:

Listing 1.107: main()

~main PROC
push ebp
mov ebp, esp
push 2
push 1
call _f signed
add esp, 8
push 2
push 1
call _f unsigned
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP

127

1.14. CONDITIONAL JUMPS

x86 + MSVC + OllyDbg

We can see how flags are set by running this example in OllyDbg. Let’s begin with f unsigned() , which
works with unsigned numbers.

CMP is executed thrice here, but for the same arguments, so the flags are the same each time.

Result of the first comparison:

[cru - main thread, module ex =0l x|
I TS FUSH EEF :
| S S = B =
3E45 a0 CHP ERi, DWORD PTR S5: [ARG.2] . ELi Bhddmell MEUCRIBE. sE445e1Y
“pPE BE JEE SHORT BB1ALAGS ERL hmeEaa
B EE E& FUSH OFFSET B@lAZE1 fFc | EEH Hooamnes
BE1A1EEE PE e FALL DWORD PR Hoe L4MSUCR168. printf 5] | LHE Ef dhEEReEe
ooininca|| > LEaaD A HoU ECie, DUORD PTR S5:[ARG. 1] Exl Bomanmel
soinleec|| v ZE4D e CHF ECH.DWORD FTR 55: [ARG. 21 EDD BELASSAS ex. AOLASSAS
EEREE Y| I BUSH DFFSET 861 Aapzs fo gummco 059 B BOIR DS .
. . .
foiniaee|| T PR B EBRA Re CALL DWORD PTR De:feHSUCRIBE. priness] |LHE £ 1) EZ BEeB Zabit BLERRREEEE)
QELALEFC) - 2304 B4 HOO ESF, 4) A 1| 55 882 3Zbit BIFFFFFFFF)
aaiaiarr|| > SESE B HOY ED¥,OWORD PTR 55:[ARG. 13 «A° S| 52 BEEE ZEpit BLEEEEEEERS
H#aken ag LIF EQu, QWORD PR 525 (ARG, 2] S 1| FS 8B5S S2bir FEFDDBEELFFF)
Junp_is taken ()T 5| 65 moze S2bic BCFFRRRRRF)
0 8| LastErr PORERERE ERROR_SUCCESS
EFL @eengzs7 [MO,E, NE, BE, S, PE, L, LE] -
Address |Hex dump 1 BESSFCAD| S -
BO1ASGE0[6L SE 62 OH| 00 6O 09 608 61 SD S0 62| OF 06 OO 66| Bt a-—tof qoooriod| RALALEES dbky I RETURN fron ew. Bl
BRIASE1H| 61 30 62 GO 0GB PO BB OB &1 SE 62 OA| 0D BB OO G| acbE | Jogartas ronnaaanl | b
BRLAZE2E| 61 20 20 62 BA BE PR BB 61 2C 62 PO/ 0P AE BA G| a== =cek | BESEEESE|| BaSERRas| Brs
BR1A3626| FF FF FF FF|FF FF FF FF| @6 B9 A9 ©A| G0 P8 G2 GO] O] L el o
AA1AZA4A| FE FF FF FF| 81 B8 8@ B8 33 3B A 6B|CC C4 56 SF|(n @ s | i s | C AseacaaT | & rar &t .
GoIASEC6(6 OB G0 00 45 26 G5 06| 60 4E G O GG GO 6O 0B 6 H(U hMU | BOSSRC4S CRGARRGALIG | oL
BRASEEE| BR BE PO BR| GE DO DR 0P| PO 0D DO DE| 0D PE D0 GO QOSEFCAC|| pasedEes i P g
BEnE R nERnER Ry ez
BA102A%6] AR GRG0 66| GR PR G6 GR| PR GRG0 06| GH GH 66 G0 AESEFCSS| | BananEad hd

Figure 1.34: OllyDbg: f unsigned() :

first conditional jump

So, the flags are: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.

They are named with one character for brevity in OllyDbg.

OllyDbg gives a hint that the (JBE) jump is to be triggered now.

Indeed,

if we take a look into Intel

manuals (11.1.4 on page 994), we can read there that JBE is triggering if CF=1 or ZF=1. The condition
is true here, so the jump is triggered.

128

1.14. CONDITIONAL JUMPS

The next conditional jump:

[E cpu - main thread, module ex

=10l x|

BOIOLGOSA|FE EE FUSH EEF i
sainiest|| v 2eEc MOl EEF, ESP 4 fFesisters [HA) =
BA1ALE5S SE45 @3 HOW ERX.DWORD PTR 55:[ARG.11 N
eainiese|] « SE4E aC CHP ER:.DWORD TR 55:[ARG.Z21 Ehv Bnetbans
eaifiesa|| . 78 BE JEE SHORT BBLALEES e
eainiece|] - & FUSH OFFSET BBLASE1S fo | Eon BoeERaod
GaiAieea|| « FFAE DE2IAs CALL DWORD PTR OS: [<&MSUCRIBE.printf>] (LMi | EED SR350550
boininca|| > Eaen @ Hou ECie, DUORD PTR 553 [ARG. 1] Exl Bommnmel
SE4D GC CHP ECH,DOWORD PTR S5:[ARG. 2] EDT BE1ASSHS e . BELASSHS
- 75 BE JHE SHORT BELALETE EIF BR1ALBEF . @861A16EF —_—
8 FUSH OFFSET B81ASE2 fr -
fotntare|| o | EE B BRGLAel CALL DWORD PTR Da: [<MSUCRIBE. prints>] |LiE EZ GEE ZEhin pIEERRRERE
EELALEFC) - | 504 84 HOD ESF, 4 . S5 BEZE Szbit B(FFFFFFFF)
gainiack|| > “BBSS eg MOl ED¥.DWORD PTR 55:[ARG.11 - 5o 6998 S50t BiFFFFFFFF)
m1ﬂﬂ? SECC [=HME EDX.DM]HD FIE SS: ARG =] FS BESS 27bit FEFODODBEELFFFI
Jump is taken R
dunp 1S taken - G5 BEZE 32bit BLFFFFFFFF]
LastErr GEEEEEEE ERROR_SUCCESS
EFL ©@@AEZS7 (NO,E,ME,EE,S,PE,L,LE] -

Address |Hex dump 1 BESSFC4E] @FS -
BG1ASGEE[BL SE 62 OH| 00 6O 00 68 61 SD 30 62| OF 06 00 06| B>t a-—t—f poocriod| REELALEES dbks RETURN fron ew. b=
BE1A3616(61 3C 62 GA| GG GO 66 06|61 SE 62 A GO 0 GO 06| aChE adhE | Bocarcac|| coooooas| &
BAIAZAZA| 61 30 S0 62| GA PA BE G| &1 3C 62 OO GF GR 0B BE| a== abE | 3935rEas|| Geseceed| pes
BA1AZA50| FF FF FF FF|FF FF FF FF| @G B0 00 06|60 00 08 69 e | BaTErEE 8 | reTurn £ o
@a1A2a48| FE FF FF FF| @1 090 80 68|33 3B A €8|CC Cd 56 9F|w =3 AEASFC4S | ¢ AREREEE] | & rar &t .
BoIASGSA|B1 BB GO GO 45 28 GG 6| A3 4E GG DO G0 0o b ool Hu hNU | BASSRC4E pamBamRal B o
BE1AZAGE| 66 BB B0 GG BB 5O GO G5 BE GO G0 06| 6B B0 0O GO pooeFLaL| BascdEes) nhy P _d
BolEo6on|6b b b G| b b b o b o o on| on o oo oo QE3EFCS4 | | 62S1CTET nlC”
BA1AZA%0] AR GR GR A6 GR PR G6 6P| PR GRG0 06| GRG0 06 66 AESEFCSS| | BananEad hd

Figure 1.35: OllyDbg: f unsigned() :

second conditional jump

OllyDbg gives a hint that INZ is to be triggered now. Indeed, INZ triggering if ZF=0 (zero flag).

129

1.14. CONDITIONAL JUMPS
The third conditional jump, JNB:

in thread, module ex ;lglil

BEIALES S| - JEE SHURT BEI1AIEES 7
ae1A1EsE| | - l2om10AA |PUSH OFFSET BEIAZO1S = Egglgggggagﬂnm —
aaiAiesa|| - CALL DWORD PTR DS:[<&MSUCR188. printf] ECH HEEEEEE]
BE1A1BEE ADD ESF, 4 EDY BRREHEE1
BE1A1BED Moy ECH,DWORD PTR S5: [ARG.11] EE* BREEDEEE
aaiAtesc|| - CHMP ECH,DWORD PTR S5:[ARG.Z] ESF RASEFCSE
aaifiEsF|| - JHME SHORT @E1A167F EEF BRZSFECoE
O B N o
H print
EEtEE | EOC ESP.4 EDI @81AZ2AS ex.@@1A33AS
AE1A1ETF Mol EQH, OWORD FTR S5: [ARG. 11 BEIAIPEE cx. BAIALIEES —
paifiEsz|| - SBES @C CHP EDH,DWORD PTR S5:[ARG. 2] ES @EEZE Shit @iFFFFEEFF]

o 72 BE JAE SHORT B61A1835 -
Golhloc: ||« | 65 ZE3R1ARA | FUSH OFFSET 9B1AZ82S D OEREE SEniT BPEREREEER
BE1ALBEC FF15 A@Zaifm CALL DWORD PTR DS: C<&MSUCR1GE. printf] M2 0% @EZE =2hit B1FFFEFFEF)
o] ADD ESF. 4
FS @053 Sehit PEFOOGEECFFF)

| Jump is not taken

oot —en . BHLALEYE G5 @EZE 32bit BIFFFFFFFF]

LastErr DOREEEEE ERROR_SUCCESS
@ESEEZS7 (MO, E,HE,EE,S,PE,L,LE] -
BESEFCA0| HES

Address | Hew dump ASCII (ANSI 2 s
POIAS000|BL O 62 OO0 0O GO 00| 61 o0 50 62| 0N OO G 06| E-te pRoorLad| moainiabe dbke | RETURN from ex.Bi—
BEIAZE16| 61 0 67 DA BB BE BB BB| 61 E 62 BA| B0 0O GB BE|a<bE | fasartss rooonaanl | B

BE1A3E26| 61 30 30 62| BA BE BB BO| 6l 20 AF BA| B0 GG 6B BE|a== e | B .

BE1A2828| FF FF FF FF|FF FF FF FF|O6 G9 98 05 60 06 68 60 i | R o Ol I

BB1R6en| BT [G b 45 S5 Se Ba|ca 4E Se 0| G5 op 69 bo|e Ay no | 993SFces| rooeenal) &
BOIAZEE6| 06 GO GO 05| 66 0R GR G0|P0 A0 PO 06 08 08 G8 GO BAISFCAC| | GBEE4ESE) RN | ASCIT "pHU™

BELAZETE| BR 0D OO GR| BB OB DO GO DO PO GO GG DR B0 OB GO pree | R Hl[rg‘ —t
BE1AZ656| 0R BO PO DD| 0GP DR DR 0O DO GO OB OR GO PO B0 GD BASSFLSS| | SESILIET In -
e HE656| BR BE P60 06| G0 BR BR GE| D6 G5 GR G6 BE BH A6 GR

Figure 1.36: OllyDbg: f unsigned() : third conditional jump

In Intel manuals (11.1.4 on page 994) we can see that JNB triggers if CF=0 (carry flag). That is not true
in our case, so the third printf() will execute.

130

1.14. CONDITIONAL JUMPS
Now let’s review the f signed() function, which works with signed values, in OllyDbg. Flags are set

in the same way: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0. The first conditional jump JLE is to be
triggered:

in thread, module ex -0 =|
BB 1H1000 TE PUSH_EBP e i
BE1A1 6] SEELC MOL EEF, ESP e T 2
BE1A1503 MOU EAX,DWORD PTR SS:[ARG.1] BT et nie
CHP EF, DWORD PTR S3: [ARG. 2] A
JLE SHORT BB1A1813 D Hoanaas
PUSH OFFSET _801A3000 fc | EEx mogamags
CALL OWORD FTR DS:L[<&MSUCR1EE.printf>l |Lng | EST DOSCFESH
HDO Ecw!DUORD PTR SS:[ARG. 1] i .
CHP ECH, OWORD PTR S5: [ARG.2] :
JME